Application General Infomation Applicant Name Smartlink LLC Up Application Type Minor Modification Ann Carrier AT&T Wireless Will gov Solution Type Macro tele Existing Existing gov Application Description Gvi AT&T proposes to remove (2) existing antennas, (15) existing RRHs (1) GSM cabinet a	dated n. Plan? Il site be used to s vernment ecommunications other equipment f vernment use?	3/10/2020 Yes upport facilities		
Applicant NameSmartlink LLCUpApplication TypeMinor ModificationAndCarrierAT&T WirelessWileSolution TypeMacroteleExistingExistinggovGviGviApplication DescriptionGviAT&T proposes to remove (2) existing antennas, (15) existing RRHs (1) GSM cabinet a	dated n. Plan? Il site be used to s vernment ecommunications other equipment f vernment use?	3/10/2020 Yes upport facilities		
Application Type Minor Modification Ani Carrier AT&T Wireless Wii Solution Type Macro gov Existing Existing gov Application Description Gvi Gvi AT&T proposes to remove (2) existing antennas, (15) existing RRHs (1) GSM cabinet a Gvi	n. Plan? Il site be used to s vernment ecommunications other equipment f vernment use?	Yes support facilities		
Carrier AT&T Wireless Wi Solution Type Macro tele Existing Existing gov Application Description AT&T proposes to remove (2) existing antennas, (15) existing RRHs (1) GSM cabinet a	Il site be used to s vernment ecommunications other equipment f vernment use?	facilities		
Solution Type Macro tele Existing Existing gov Application Description AT&T proposes to remove (2) existing antennas, (15) existing RRHs (1) GSM cabinet a	vernment ecommunications other equipment f vernment use?	facilities		
Application Description AT&T proposes to remove (2) existing antennas, (15) existing RRHs (1) GSM cabinet a	other equipment f vernment use?	for		
Gvi Application Description AT&T proposes to remove (2) existing antennas, (15) existing RRHs (1) GSM cabinet a		101		
Application Description AT&T proposes to remove (2) existing antennas, (15) existing RRHs (1) GSM cabinet a	t. Use desc.			
AT&T proposes to remove (2) existing antennas, (15) existing RRHs (1) GSM cabinet a				
Site Infomation				
Site Id 53.01 Zoning	R-H			
Structure Type Building Latitude	39.01677	8		
Address 9727 Mt. Pisgah Rd, Silver Spring Longitude	-76.97451	.7		
County Site Name Chateau Apartments Ground Elevation	32	.6		
Carrier Site Name Gill City	Silver Spring			
Site Owner Hillzo LP Lease Status	Leased			
Structure Owner Hillzo LP Does the structure req structure registration	uire an antenna under FCC Title 47	7 No		
Existing Structure Height 133'6" Provide the proposed height Distance to Residential of the replacement structure (New, Replacement, Constructure) without any antenna (New, New,	Distance to Residential Property (New, Replacement, Colocation Only)			
Replacement Apps Only) Distance to Commercia (New, Replacement, Co	al Property olocation Only)			
Justification of why this site was selected:				

App No:

2020031117

Screening considerations(New, Colocations, Replacement Apps Only):

App No:

2020031117

409 application? (Minor Mod, Colocations Only) No Will the proposed installation increase the width by adding appurtenance to the body of the structure that would protrude from the edge of the structure by more than 6 feet? More than four Equipment Cabinets? XN					
Will the proposed installation require excavation or expansion outside the current boundaries of the site? Does the structure or current installation have concealment elements/measures? If yes, describe how the proposed installation does not defeat the existing concealment.					
Wireless Facility Information					
Small Wireless Facility? No					
Cumulative volume of the proposed wireless equipment(s) 240.69 exclusive of antennas in cubic feet Cumulative volume of the proposed antenna antenna(s) exclusive of equipment					
Information					
Pole Number					

App No:	2020031117	
	Antenna Infomation	
Antenna Complia	ance Yes	
Compliance Desc		
Antenna Locatior	n Yes	
Antenna Loc. Des	5C.	
Env. Assessment		
Cat. Excluded? Routine Env. Eval	luation Checked	
Antenna Model C	CCL BSA-M65R-BUU-H6	
Frequency 704-7	710, 734-740, 710-716, 740-746, 716-722, 824-835, 869-880, 845-846.5, 890-891.5, 1870-1885, 1950-1965,	

1046 Antenna Dimensions 72(h)x28.5(w).9.7(d)

RAD Center

140 Max ERP

Quantity

2

Moffet Rd

Braddock

Cottrell Terrace

Neely Rd

Oakview Dr

Capital

۲

۲

R

Home Comfort Air Services

===

Mt Pisgah Rd

Hampshire Green Ln

Avery Park

Avery real Apartment Homes Greenwich

Moffet Rd NewHampshire Ave CASH FOR JUNK CARS DMV

650

650

650

Map

Hampshire Greeng Göögle ě Imagery ©2020 Commonwealth of Virginia, Maxar Technologies, Sanborn, U.S. Geological Survey, USDA Farm Service Agency, Map data ©2020 **United States** Send feedback

Terms

200 ft

CCI - BSA-M65R-BUU-H6

V FREQUENCY BAND	Elevation	< -18	< -18	< -18	< -18	< -18	< -18
	Sidelobes (1st	-ID					
604-806 MHz	Upper)	ав	aв	aв	dВ	aв	aв
_	Front-to-Back	> 30 dB	> 30 dB	> 30 dB	> 30 dB	> 30 dB	> 30 dB
698-798 MHz	Ratio @180°	- 00 00	- 00 GD	2 00 QD	2 00 QD	2 00 QD	> 00 UD
	Front-to-Back	> 27 dB	> 30 dB	> 30 dB	> 30 dB	> 30 dB	> 28 dB
698-896 MHz	Ratio over <u>+</u> 20°						
□ 698-960 MHz	Cross-Polar						
	Port-to-Port	> 25 dB	> 25 dB	> 25 dB	> 25 dB	> 25 dB	> 25 dB
790-960 MHz	Isolation						
	Voltage						
824-896 MHz	Standing Wave	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1
	Ratio(VSWR)						
1710-1880 MHz	Passive	≤ - 150	\leq -150	\leq -150	\leq -150	\leq -150	≤ - 150
	Intermodulation	dBc	dBc	dBc	dBc	dBc	dBc
1692-2180 MHZ	(2×20W)		0.50	0.00	0.00	0.00	
1695-2360 MHz	Input Power	500	500	300	300	300	300
	Continuous	watts	watts	watts	watts	watts	watts
1695-2690 MHz	Wave (CW)						
-	Polarization	Dual	Dual	Dual	Dual	Dual	Dual
1850-1995 MHz		Linear	Linear	Linear	Linear	Linear	Linear
2300-2400 MHz		45°	45°	45°	45°	45°	45°
2300-2690 MHz	Input	50	50	50	50	50	50
	Impedance	ohms	ohms	ohms	ohms	ohms	ohms
2496-2690 MHz	Lightning	DC	DC	DC	DC	DC	DC
	Protection		DC	DC	DC	DC	DC
		Ground	Ground	Ground	Ground	Ground	Ground

✓ Mechanical

Dimensions (L×W×D)	72.0×28.5×9.7 in (1828×723×245 mm)					
Survival Wind Speed	> 150 mph (> 240 kph)					
Front Wind Load	438 lbs (1947 N) @ 100 mph (161 kph)					
Side Wind Load	175 lbs (778 N) @ 100 mph (161 kph)					
Equivalent Flat Plate	$17.1 \text{ ft}^2 (1.6 \text{ m}^2)$					
Area						
Weight *	101.0 lbs (45.9 kg)					
RET System Weight	6.6 lbs (3.0 kg)					
Connector	12 \times 7-16 DIN female long neck					
Mounting Pole	2 to 5 in (5 to 12 cm)					

* Weight excludes mounting and RET

RET Connection Diagram

Connector Spacing

✓ HEIGHT 2 ft. (458 - 761 mm) 3 ft. (762 - 1066 mm)

- 4 ft. (1067 1371 mm)
- 5 ft. (1372 1676 mm)
- 6 ft. (1677 1981 mm)
- 7 ft. (1982 2286 mm)
- 8 ft. (2287 2590 mm)
- 9 ft. (2591 2896 mm)

V HORIZONTAL BEAMWIDTH

TBD

✤ Typical Antenna Patterns

For detailed information on additional support@cciproducts.com

761 MHz Azimuth Elevation 7

1910 MHz Azimuth Elevation

Tweet Kenail

EXTENDING WIRELESS PERFORMANCE

CCI HOME CONTACT US CAREER OPPORTUNITIES ABOUT US CORPORATE GOVERNANCE PRIVACY POLICY CONFLICT MINERAL

POLICY

NEWS

NEWSROOM PRODUCT ANNOUNCMENTS

SUPPORT

TECHNICAL SUPPORT CUSTOMER SERVICES

Communication Components Inc.

89 Leuning Street South Hackensack, NJ 07606 +1 (201) 342-3338 +1 (201) 342-3339 fax sales@cciproducts.com

Copyright © 2020. CCI.

8618 Westwood Center Drive, Suite 315, Vienna, VA 22182 703.276.1100 • 703.276.1169 fax info@sitesafe.com • www.sitesafe.com

Smartlink on behalf of AT&T Mobility, LLC Site FA – 10128448 Site ID – MDL03821 USID – 100205 Site Name – GILL (MRWSH034472)

9727 Mount Pisgah Road Silver Spring, MD 20903

Latitude: N39-01-00.00 Longitude: W76-58-30.00 Structure Type: Rooftop

R

Report generated date: January 24, 2020 Report by: Leo Romero Customer Contact: Lauren Kersey

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

Sitesafe logo is a registered trademark of Site Safe, LLC. All rights reserved.

AT&T Proprietary (Internal use only). Not for use or disclosure outside the AT&T companies, except under written agreement. @2019 AT&T intellectual property. Ati rights reserved.

Table of Contents

1 GENERAL SITE SUMMARY	3
 1.1 Report Summary 1.2 Fall Arrest Anchor Point Summary 1.3 Signage Summary 	3 3 4
2 SCALE MAPS OF SITE	5
3 ANTENNA INVENTORY	7
4 EMISSION PREDICTIONS	. 10
5 SITE COMPLIANCE	. 14
5.1 Site Compliance Statement5.2 Actions for Site Compliance	14 14
6 REVIEWER CERTIFICATION	. 16
APPENDIX A – STATEMENT OF LIMITING CONDITIONS	. 17
APPENDIX B - REGULATORY BACKGROUND INFORMATION	. 18
FCC Rules and Regulations OSHA Statement	18 19
APPENDIX C - SAFETY PLAN AND PROCEDURES	. 20
APPENDIX D - RF EMISSIONS	. 21
APPENDIX E - ASSUMPTIONS AND DEFINITIONS	. 22
General Model Assumptions Use of Generic Antennas	22 22
APPENDIX F - DEFINITIONS	. 23
APPENDIX G – REFERENCES	. 25

1 General Site Summary

1.1 Report Summary

AT&T Mobility, LLC	Summary
Max Cumulative Simulated RFE Level on the	9,679.0% General Public Limit 1" in front of AT&T
Ground	Mobility, LLC's Gamma Sector Antenna #8
Max Cumulative Simulated RFE Level on the	9,679.0% General Public Limit 1" in front of AT&T
Rooftop Walking Surface	Mobility, LLC's Gamma Sector Antenna #8
Max Cumulative Simulated RFE Level on the	<1% General Public Limit
Ground	
Compliant per FCC Rules and Regulations?	Will Be Compliant
Compliant per AT&T Mobility, LLC's Policy?	No

The following documents were provided by the client and were utilized to create this report:

RFDS: WASHINGTON-D.C.-MARYLAND_WASHINGTON-DC-BALTIMORE_GILL_2020-Cell-Site-RF-Modifications_Split-Sector_006650_2251A0S58F_10128448_100205_10-08-2019_Final-Approved_v1.00

CD's: 10128448.AE201.REV C.GILL.100205.01142020

RF Powers Used: MAX RRH Powers

1.2 Fall Arrest Anchor Point Summary

Fall ArrestParapet AvailableAnchor &(Y/N)Parapet Info		Parapet Height (inches)	Fall Arrest Anchor Available (Y/N)
Roof Safety Info	N	0	N

1.3 Signage Summary

11	di lite dite via	In Anal orginage	TEXISING OF	gridger					
AT&T Signage Locations		Information 2	Notice	Notice 2	Caution	Courtion 2	Warping	Warning 2	Barriers
Access	2							rionining 2	Building
Point(s)									
Alpha									
Beta									
Gamma									

a. Pre-Site Visit AT&T Signage (Existing Signage)

Note: All existing signage was documented during a previous site visit on 6/27/17.

b. Proposed AT&T Signage

AT&T Signage Locations	Information 1	Information 2	Notice	Notice 2	Caution	Caution 2	Warning	Warning 2	Barriers
Access									
Point(s)									
Alpha						3			X
Beta						9			X
Gamma								4	Х

AT&T Proprietary (Internal use only). Not for use or disclosure outside the AT&T companies, except under written agreement, @2019 AT&T intellectual property. All rights reserved.

2 Scale Maps of Site

The following diagrams are included:

- Site Scale Map •
- RF Exposure Diagram
 RF Exposure Diagram Detailed View West
 AT&T Mobility, LLC Contribution

	(Feet)	
	1	1
0	17.9	35.8
www.s	sitesafe.com	
Site Na	ame:GILL	
1/24/2	2020 1:07:09 PM	

3 Antenna Inventory

The following antenna inventory was obtained by the customer and was utilized to create the site model diagrams:

	_	r												_						
EDI	50	22	5°	20	20	50	5°	10°	120	5°	5°	5°	6°	2°	20	6°	°9	4 0	¢4	40
IGM	ô	ô	°	°	°	°	°	°	°	°	°o	°	°	°0°	20	°o	°	ô	စိ	စိ
-	4.8	ъ	ē	ē	ē	Ś	Ω	۰*9	¢*	6'	-9	¢*	ω	7.8'	4.8'	4	4	4	4	4
Ant Gain (dBd)	12	13.56	13.56	15.36	15.56	15.56	14.26	13.56	13.56	15.36	15.56	15.56	14.26	12	12	14.25	14.25	15.84	16.25	16.25
Total ERP (Watts)	1267.9	3631.8	3631.8	5496.9	2878	2878	2666.9	3631.8	3631.8	5496.9	2878	2878	2666.9	1267.9	1267.9	2128.6	2128.6	6139.3	3373.6	3373.6
TX	-	-	-	-	-	-	-	-	-	-	-	1	-		-	-	-	-	-	-
Misc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt
Power	IPO	TPO	IPO	DAL	TPO	TPO	TPO	TPO	TPO	IPO	TPO	TPO	TPO	TPO	IPO	IPO	TPO	TPO	TPO	IPO
Power	8	160	160	160	80	80	100	160	160	160	80	80	100	80	80	80	80	160	80	80
Ant Len	4.3	Ø	ω	ω	80	80	4	œ	8	8	8	8	4	4.3	4.3	9	9	9	9	9
Hor BW	68.4	75	75	59	61	61	61.1	75	75	59	61	61	61.1	68.4	68.4	36.3	36.3	32.3	27.9	27.9
Az	0	0	0	0	0	0	0	110	110	110	110	110	110	150	270	260	260	260	260	260
Technology	UMTS	LTE	LTE	LTE	LTE	AWS3	LTE	LFE	LTE	LTE	LTE	AWS3	LTE	UMTS	UMTS	LTE	LTE	LTE	LTE	AWS3
TX Freq	850	737	763	1900	2110	2160	2300	737	763	0061	2110	2160	2300	850	850	737	263	1900	2110	2160
e Cy	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel
Antenna Make & Madel	Kathrein-Scala 742-264	Commscope NNH4- 65C-R6	Commscope NNH4- 65C-R6	Commscope NNH4- 65C-R6	Commscope NNH4- 65C-R6	Commscope NNH4- 65C-R6	CCI Antennas OPA- 65R-LCUU-H4	Commscope NNH4- 65C-R6	Commscope NNH4- 65C-R6	Commscope NNH4- 65C-R6	Commscope NNH4- 65C-R6	Commscope NNH4- 65C-R6	CCI Antennas OPA- 65R-LCUU-H4	Kathrein-Scala 742-264	Kathrein-Scala 742-264	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)				
Onercifor	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC (Proposed)	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC (Proposed)	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC (Proposed)				
Ant ID	-	7	2	2	2	2	σ	4	4	4	4	4	S	9	7	8	ω	œ	ω	œ

A18.1 Proprietary (Infemal use only). Not for use or disclosure outside the A18.1 companies, except under written agreement, ©2019 A18.1 intellectual property. A11 rights reserved. P3ge 7

EDT	°9	6°	4°	40	4°	6°	40	°9	°9	6°	40	ô	ô	°	00	°	ô	°	ô	°	°	ô	ô	ô	°	ô
MDT	8	°	°	°	°	ô	°0	ô	ô	°	ô	ô	ô	°0	00	°	8	°	°	°	°	ô	o	ô	°	ô
2	4.	4	4'	4'	4'	4'	4	,4	4	4	4	15.7	13.9'	14.5'	14.5'	14.7'	20.5'	20.5'	20.7'	20.7'	4.5'	4.5	3.9'	4.7'	17'	15.9'
Ant Gain (dBd)	14.25	14.25	15.85	16.25	16.25	14.25	15.85	14.25	14.25	14.25	15.85	15.23	12.56	15.86	15.86	15.37	15.86	15.86	15.37	12.14	15.86	15.86	12.56	15.37	15.01	13.43
Total ERP (Wothe)	2128.6	2128.6	6153.5	3373.6	3373.6	2128.6	3845.9	2128.6	2128.6	2128.6	3845.9	0	2884.8	4625.7	4625.7	4132.2	4625.7	4625.7	4132.2	2618.9	4625.7	4625.7	2884.8	4132.2	5071.3	2202.9
TX TX	-	I	-	-	1	-	1		-	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Misc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt											
Power	OdI	TPO	ERP	TPO	TPO	TPO	TPO	TPO	TPO	TPO	TPO	TPO	TPO	TPO	TPO	TPO	TPO									
Power	80	80	160	80	80	80	00[80	80	80	100	0	160	120	120	120	120	120	120	160	120	120	160	120	160	10
Ant Len	¢	9	9	9	6	9	6	6	6	Ŷ	6	4.6	6.3	4.9	4.9	4.7	4.9	4.9	4.7	4.6	4.9	4.9	6.3	4.7	4.1	6.3
Hor BW	33.8	33.8	33.9	27.1	27.1	36.3	23.6	36.3	33.8	33.8	25.5	65	65	65	65	- 65	65	65	65	65	65	65	65	65	65	65
Az	260	260	260	260	260	260	260	260	260	260	260	60	30	30	30	90	150	150	150	150	270	270	270	270	100	8
Technology	LTE	LTE	LTE	LTE	AWS3	LTE	LTE	LTE	LTE	LTE	AWS3								141							
TX Freq	737	763	0061	2110	2160	763	2300	737	737	763	2300	2100	700	1900	2100	1900	1900	2100	1900	700	1900	2100	700	1900	2500	862
Tune	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel											
Antanna Maka 8 Madal	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Generic Panel	Generic Panel	Ericsson AIR 32 B4A B2P	Ericsson AIR 32 B4A B2P	Ericsson AIR 21 B2A B4P	Ericsson AIR 32 B4A B2P	Ericsson AIR 32 B4A B2P	Ericsson AIR 21 B2A B4P	Generic Panel	Ericsson AIR 32 B4A B2P	Ericsson AIR 32 B4A B2P	Generic Panel	Ericsson AIR 21 B2A B4P	Generic Panel	Generic Panel				
Omerator	AT&T MOBILITY LLC (Proposed)	CRICKET COMMUNICATIONS (Decommissioned)	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	SPRINT	SPRINT										
Ant 10	8	œ	œ	œ	œ	6	6	6	0	6	6	0	=	12	12	13	14	14	15	16	17	17	18	19	20	21

8

A181 Proprietary (Internal use only). Not for use or disclosure outside the A181 companies, except under written agreement, @2019 A181 tratellectual property. A11 rights reserved. Page 8

ſ	1
	Шŝ
	4
	ហ៊
	<u>لد</u>
L	1
L	0]
h	1
	-
	G
1	

1	ā	8	°	ô	ô	ô	ô	00	ô	°	°	°	°	°	ô	°	ô	ô	°	°	°	°	°	8
	5	0	0	0	•(0	0	0	0	o(0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2 L	6.	.9' 0	.9' 0	7" (7	.9' 0	.9' (3'	9' (3, 0	5 0	3, (9' (6 0	8'	.9' (6' 0	7" 0	.6' (.6'	8' (7' 0	
÷.= ²	6	26 15	43 15	26 15	1 10	1 10	43 16	26 16	1 10	36 1	1 10	56 1.	1 10	56 1	56 1	7 1	19 19	36 1	56 1	7 17	7 17	7 1	6 1	1
A B	AD)	16.2	13.4	16.2	15.0	15.0	13.4	16.2	15.0	48.8	15.0	32.6	15.0	37.6	32.6	9.9	16.(42.3	37.6	2.9	2.9	9.6	37.6	9.6
Total ERP	(Matts)	7608	2202.9	7608	5071.3	5071.3	2202.9	7608	1267.8	769.1	1267.8	36.9	1267.8	58.3	18.5	100	20	172.2	58.3	100	100	100	58.3	8
۲Ľ.	Count	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Misc	LOSS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power	Ourt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt								
Power	lype	TPO	TPO	TPO	TPO	TPO	TPO	ERP	ERP	TPO	TPO	ERP	ERP	ERP	TPO	ERP								
	rower	180	100	180	160	160	100	180	40	0.01	40	0.02	40	0.01	0.01	100	20	0.01	0.01	00[100	100	0.01	8
Ant Len	E	6.3	6.3	6.3	4.1	4.1	6.3	6.3	4.1	2	4.1	0	4.1	2	-	14	2.2	-	2	4.7	4.7	14	0	14
Hor BW	(Deg)	65	65	65	65	65	65	65	65	2	65	2	65	2	2	360	60	2	2	360	360	360	0	360
Az	(Deg)	8	270	270	280	0	0	0	180	190	260	280	355	90	60	0	160	340	10	0	0	0	170	0
	lechnology																							
TX Freq	(ZHW)	1900	862	1900	2500	2500	862	1900	2500	80000	2500	23000	2500	18000	23000	850	5800	80000	18000	450	450	850	18000	850
	lype	Panel	Aperture	Panel	Aperture	Panel	Aperture	Aperture	Omni	Panel	Aperture	Aperture	Omni	Omni	Omni	Aperture	Omni							
	Antenna Make & Model	Generic Panel	Generic Microwave	Generic Panel	Generic Microwave	Generic Panel	Generic Microwave	Generic Microwave	Generic Omni	Generic Panel	Generic Microwave	Generic Microwave	Generic Omni	Generic Omni	Generic Omni	Generic Microwave	Generic Omni							
-	Operator	SPRINT	SPRINT	SPRINT	SPRINT	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER								
	Ant ID	21	22	22	23	24	25	25	26	27	28	\$	8	31	32	83	34	35	36	37	ĝ	39	40	41

provided by the operator or based on Sitesafe experience. The values used in the modeling may be greater than are currently deployed. For other operators at this site the use of "Generic" as an antenna model or "Unknown" for a wireless operator means the information with regard to operator, their FCC license and/or antenna information was not available nor could it be secured while on site. Other operator's equipment, antenna models and powers used for modeling are based on obtained information or Sitesafe experience. Proposed equipment is tagged as (Proposed) under Operator or Antenna Make & Note: The 2 reference indicates the bottom of the antenna height above the main site level unless otherwise indicated. Effective Radiated Power (ERP) is Model.

Note: The 763MHz LTE technology is being added to existing antennas.

4 **Emission Predictions**

In the RF Exposure Simulations below, all heights are reflected with respect to main site level. In most rooftop cases this is the height of the main rooftop and in other cases this can be ground level. Each different height area, rooftop, or platform level is labeled with its height relative to the main site level. Emissions are calculated appropriately based on the relative height and location of that area to all antennas. The total analyzed elevations in the below RF Exposure Simulations are listed below.

- MAIN LEVEL = 0'
- PH1 and PH3 = 10'
- PH2 = 15'
- AT&T EQP = 2'

The Antenna Inventory heights are referenced to the same level.

(Feet) 0 17.9 35.8 www.sitesafe.com Site Name:GILL 1/24/2020 1:07:09 PM

0

Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

% of FCC Public Exposure Limit Spatial average 0' - 6'

0

Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

5 Site Compliance

5.1 Site Compliance Statement

Upon evaluation of the cumulative RF emission levels from all operators at this site, RF hazard signage and antenna locations, Sitesafe has determined that:

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

Based on measurement or predictions, other wireless operators on this site may be out of RF exposure compliance with FCC regulations on this site. We recommend that those operators review this site with respect to RF exposure compliance.

The compliance determination is based on General Public RFE levels derived from theoretical modeling, RF signage placement, proposed antenna inventory and the level of restricted access to the antennas at the site. Any deviation from the AT&T Mobility, LLC proposed deployment plan could result in the site being rendered non-compliant.

Modeling is used for determining compliance and the percentage of MPE contribution.

5.2 Actions for Site Compliance

Based on FCC regulations, common industry practice, and our understanding of AT&T Mobility, LLC's RF Safety Policy requirements, this section provides a statement of recommendations for site compliance. Recommendations have been proposed based on our understanding of existing access restrictions, signage, and an analysis of predicted RFE levels.

AT&T Mobility, LLC will be made compliant if the following changes are implemented:

AT&T Mobility, LLC Proposed Alpha Sector Location

(2) Yellow Caution 2 sign(s) required one on each side of the sector.
Install a barrier that is 7' long, comprised of (1) segment(s) and an estimated
(2) stanchions, as depicted in the site scale map.

Install (1) total Caution 2 sign(s) on the proposed barrier stanchions.

7' segment: (1) Caution 2 sign(s)

AT&T Mobility, LLC Proposed Beta Sector Location

(2) Yellow Caution 2 sign(s) required one on each side of the sector.

Install a barrier that is 33' long, comprised of (3) segment(s) and an estimated (7) stanchions, as depicted in the site scale map.

Install (6) total Caution 2 sign(s) on the proposed barrier stanchions.

- 11' segment: (2) Caution 2 sign(s)
- 14' segment: (3) Caution 2 sign(s)
- 8' segment: (1) Caution 2 sign(s)

Install a barrier that is 4' long, comprised of (1) segment(s) and an estimated (2) stanchions, as depicted in the site scale map.

Install (1) total Caution 2 sign(s) on the proposed barrier stanchions.

• 4' segment: (1) Caution 2 sign(s)

AT&T Mobility, LLC Proposed Gamma Sector Location

(2) Red Warning 2 sign(s) required one on each side of the sector.
Install a barrier that is 6' long, comprised of (1) segment(s) and an estimated
(2) stanchions, as depicted in the site scale map.

Install (1) total Warning 2 sign(s) on the proposed barrier stanchions.

• 6' segment: (1) Warning 2 sign(s)

Install a barrier that is 8' long, comprised of (1) segment(s) and an estimated (2) stanchions, as depicted in the site scale map.

AT&T Proprietary (Internal use only). Not for use or disclosure outside the AT&T companles, except under written agreement. 😔 2019 AT&T Intellectual property. All rights reserved.

Install (1) total Warning 2 sign(s) on the proposed barrier stanchions.
8' segment: (1) Warning 2 sign(s)

AT&T Mobility, LLC is predicted to exceed 5% of the GP limit in an area near T-Mobile antennas #17, #18 and #19 that is predicted to exceed that limit and no signs or barriers are in place. AT&T Mobility, LLC should work with T-Mobile to ensure compliance at this location.

Install a barrier that is 14' long on the right side of T-Mobile's antennas #17, #18 and #19, comprised of (2) segment(s) and an estimated (3) stanchions, as depicted in the site scale map

Recommended per AT&T Mobility, LLC's Policy:

Site Access Location

Sitesafe recommends that all AT&T Mobility, LLC signage be removed from all access points, as they are not required by AT&T Mobility, LLC's signage policy.

Notes:

- Signage on the barriers should be placed on the stanchions no more than 8' apart from each other.
- Barriers were only recommended in areas predicted to exceed the General Public MPE limit greater than 6' from the unprotected roof edges.
 All other predicted to exceed areas are within 6' of the unprotected roof edges.
- Any existing signage that conflicts with the proposed signage in this report should be removed per AT&T Signage Posting Rules.
- Ensure all existing signage documented in this report still exist at the site, unless otherwise indicated.

Other Operator Antennas:

T-Mobile should review their Gamma sector.

6 **Reviewer** Certification

The reviewer whose signature appears below hereby certifies and affirms:

That I am an employee of Site Safe, LLC; in Vienna, Virginia, at which place the staff and I provide RF compliance services to clients in the wireless communications industry; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission (FCC) as well as the regulations of the Occupational Safety and Health Administration (OSHA), both in general and specifically as they apply to the FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields; and

That I have thoroughly reviewed this Site Compliance Report and believe it to be true and accurate to the best of my knowledge as assembled by and attested to by Leo Romero.

January 24, 2020

Anthony Handley

Appendix A – Statement of Limiting Conditions

Sitesafe has provided computer generated model(s) in this Site Compliance Report to show approximate dimensions of the site, and the model is included to assist the reader of the compliance report to visualize the site area, and to provide supporting documentation for Sitesafe's recommendations.

Sitesafe may note in the Site Compliance Report any adverse physical conditions, such as needed repairs, that Sitesafe became aware of during the normal research involved in creating this report. Sitesafe will not be responsible for any such conditions that do exist or for any engineering or testing that might be required to discover whether such conditions exist. Because Sitesafe is not an expert in the field of mechanical engineering or building maintenance, the Site Compliance Report must not be considered a structural or physical engineering report.

Sitesafe obtained information used in this Site Compliance Report from sources that Sitesafe considers reliable and believes them to be true and correct. Sitesafe does not assume any responsibility for the accuracy of such items that were furnished by other parties. When conflicts in information occur between data collected by Sitesafe provided by a second party and data collected by Sitesafe, the data will be used.

Appendix B – Regulatory Background Information

FCC Rules and Regulations

In 1996, the Federal Communications Commission (FCC) adopted regulations for evaluating the effects of RF emissions in 47 CFR § 1.1307 and 1.1310. The guideline from the FCC Office of Engineering and Technology is Bulletin 65 ("OET Bulletin 65"), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, Edition 97-01, published August 1997. Since 1996, the FCC periodically reviews these rules and regulations as per their congressional mandate.

FCC regulations define two separate tiers of exposure limits: Occupational or "Controlled environment" and General Public or "Uncontrolled environment". The General Public limits are generally five times more conservative or restrictive than the Occupational limit. These limits apply to accessible areas where workers or the general public may be exposed to Radio Frequency (RF) electromagnetic fields.

Occupational or Controlled limits apply in situations in which persons are exposed as a consequence of their employment and where those persons exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

An area is considered a Controlled environment when access is limited to these aware personnel. Typical criteria are restricted access (i.e. locked or alarmed doors, barriers, etc.) to the areas where antennas are located coupled with proper RF warning signage. A site with Controlled environments is evaluated with Occupational limits.

All other areas are considered Uncontrolled environments. If a site has no access controls or no RF warning signage it is evaluated with General Public limits.

The theoretical modeling of the RF electromagnetic fields has been performed in accordance with OET Bulletin 65. The Maximum Permissible Exposure (MPE) limits utilized in this analysis are outlined in the following diagram:

FCC Limits for Maximum Permissible Exposure (MPE) Plane-wave Equivalent Power Density

Limits for Occupational/Controlled Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (E)	Magnetic Field Strength	Power Density (S) (mW/cm²)	Averaging Time E ², H ² or S (minutes)
	(v/m)	(H) (A/m)		
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f²)*	6
30-300	61.4	0.163	1.0	6
300-1500	22		f/300	6
1500-	÷.		5	6
100.000				

Limits for General Population/Uncontrolled Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ² , H ² or S (minutes)				
0.3-1.34	614	1.63	(100)*	30				
1.34-30	824/f	2.19/f	(180/f ²)*	30				
30-300	27.5	0.073	0.2	30				
300-1500			f/1500	30				
1500-			1.0	30				
100,000								
f = frequ	uency in MHz	*Plane-wave equivalent power density						

OSHA Statement

The General Duty clause of the OSHA Act (Section 5) outlines the occupational safety and health responsibilities of the employer and employee. The General Duty clause in Section 5 states:

(a) Each employer –

- shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees;
- (2) shall comply with occupational safety and health standards promulgated under this Act.
- (b) Each employee shall comply with occupational safety and health standards and all rules, regulations, and orders issued pursuant to this Act which are applicable to his own actions and conduct.

OSHA has defined Radiofrequency and Microwave Radiation safety standards for workers who may enter hazardous RF areas. Regulation Standards 29 CFR § 1910.147 identify a generic Lockout/Tagout procedure aimed to control the unexpected energization or startup of machines when maintenance or service is being performed.

Appendix C – Safety Plan and Procedures

The following items are general safety recommendations that should be administered on a site by site basis as needed by the carrier.

General Maintenance Work: Any maintenance personnel required to work immediately in front of antennas and / or in areas indicated as above 100% of the Occupational MPE limits should coordinate with the wireless operators to disable transmitters during their work activities.

<u>Training and Qualification Verification</u>: All personnel accessing areas indicated as exceeding the General Population MPE limits should have a basic understanding of EME awareness and RF Safety procedures when working around transmitting antennas. Awareness training increases a worker's understanding to potential RF exposure scenarios. Awareness can be achieved in a number of ways (e.g. videos, formal classroom lecture or internet-based courses).

Physical Access Control: Access restrictions to transmitting antennas locations is the primary element in a site safety plan. Examples of access restrictions are as follows:

- Locked door or gate
- Alarmed door
- Locked ladder access
- Restrictive Barrier at antenna (e.g. Chain link with posted RF Sign)

<u>RF Signage</u>: Everyone should obey all posted signs at all times. RF signs play an important role in properly warning a worker prior to entering into a potential RF Exposure area.

Assume all antennas are active: Due to the nature of telecommunications transmissions, an antenna transmits intermittently. Always assume an antenna is transmitting. Never stop in front of an antenna. If you have to pass by an antenna, move through as quickly and safely as possible thereby reducing any exposure to a minimum.

<u>Maintain a 3-foot clearance from all antennas</u>: There is a direct correlation between the strength of an EME field and the distance from the transmitting antenna. The further away from an antenna, the lower the corresponding EME field is.

Site RF Emissions Diagram(s): Section 4 of this report contains RF Diagram(s) that outline various theoretical Maximum Permissible Exposure (MPE) areas at the site. The modeling is a worst-case scenario assuming a duty cycle of 100% for each transmitting antenna at full power. This analysis is based on one of two access control criteria: General Public criteria means the access to the site is uncontrolled and anyone can gain access. Occupational criteria means the access to the antenna locations.

Appendix D – RF Emissions

The RF Emissions Simulation(s) in this report display theoretical spatially averaged percentage of the Maximum Permissible Exposure for all systems at the site unless otherwise noted. These diagrams use modeling as prescribed in OET Bulletin 65 and assumptions detailed in Appendix E.

The key at the bottom of each RF Emissions Simulation indicates percentages displayed referenced to FCC General Public Maximum Permissible Exposure (MPE) limits. Color coding on the diagram is as follows:

- Areas indicated as Gray are predicted to be below 5% of the MPE limits. Gray represents areas more than 20 times below the most conservative exposure limit. Gray areas are accessible to anyone.
- Green represents areas are predicted to be between 5% and 100% of the MPE limits. Green areas are accessible to anyone.
- Blue represents areas predicted to exceed the General Public MPE limits but are less than Occupational limits. Blue areas should be accessible only to RF trained workers.
- Yellow represents areas predicted to exceed Occupational MPE limits. Yellow areas should be accessible only to RF trained workers able to assess current exposure levels.
- Red represents areas predicted to have exposure more than 10 times the Occupational MPE limits. Red indicates that the RF levels must be reduced prior to access. An RF Safety Plan is required which outlines how to reduce the RF energy in these areas prior to access.

If trained occupational personnel require access to areas that are delineated as above 100% of the limit, Sitesafe recommends that they utilize the proper personal protection equipment (RF monitors), coordinate with the carriers to reduce or shutdown power, or make real-time power density measurements with the appropriate power density meter to determine real-time MPE levels. This will allow the personnel to ensure that their work area is within exposure limits.

Appendix E – Assumptions and Definitions

General Model Assumptions

In this site compliance report, it is assumed that all antennas are operating at **full power at all times**. Software modeling was performed for all transmitting antennas located on the site. Sitesafe has further assumed a 100% duty cycle and maximum radiated power.

The modeling is based on recommendations from the FCC's OET-65 bulletin with the following variances per AT&T guidance. Reflection has not been considered in the modeling, i.e. the reflection factor is 1.0. The near / far field boundary has been set to 1.5 times the aperture height of the antenna and modeling beyond that point is the lesser of the near field cylindrical model and the far field model taking into account the gain of the antenna.

The site has been modeled with these assumptions to show the maximum RF energy density. Areas modeled with exposure greater than 100% of the General Public MPE level may not actually occur but are shown as a prediction that could be realized. Sitesafe believes these areas to be safe for entry by occupationally trained personnel utilizing appropriate personal protective equipment (in most cases, a personal monitor).

Use of Generic Antennas

For the purposes of this report, the use of "Generic" as an antenna model, or "Unknown" for an operator means the information about a carrier, their FCC license and/or antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of equipment, antenna models, and transmit power to model the site. If more specific information can be obtained for the unknown measurement criteria, Sitesafe recommends remodeling of the site utilizing the more complete and accurate data. Information about similar facilities is used when the service is identified and associated with a particular antenna. If no information is available regarding the transmitting service associated with an unidentified antenna, using the antenna manufacturer's published data regarding the antenna's physical characteristics makes more conservative assumptions.

Where the frequency is unknown, Sitesafe uses the closest frequency in the antenna's range that corresponds to the highest Maximum Permissible Exposure (MPE), resulting in a conservative analysis.

Appendix F – Definitions

5% Rule – The rules adopted by the FCC specify that, in general, at multiple transmitter sites actions necessary to bring the area into compliance with the guidelines are the shared responsibility of all licensees whose transmitters produce field strengths or power density levels at the area in question in excess of 5% of the exposure limits. In other words, any wireless operator that contributes 5% or greater of the MPE limit in an area that is identified to be greater than 100% of the MPE limit is responsible for taking corrective actions to bring the site into compliance.

Compliance – The determination of whether a site complies with FCC standards with regards to Human Exposure to Radio Frequency Electromagnetic Fields from transmitting antennas.

Decibel (dB) – A unit for measuring power or strength of a signal.

Duty Cycle – The percent of pulse duration to the pulse period of a periodic pulse train, Also, may be a measure of the temporal transmission characteristic of an intermittently transmitting RF source such as a paging antenna by dividing average transmission duration by the average period for transmission. A duty cycle of 100% corresponds to continuous operation.

Effective (or Equivalent) Isotropic Radiated Power (EIRP) – The product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna.

Effective Radiated Power (ERP) – The product of the power supplied to the antenna and the antenna gain in a given direction relative to a half-wave dipole antenna.

Gain (of an antenna) – The ratio of the maximum power in a given direction to the maximum power in the same direction from an isotropic radiator. Gain is a measure of the relative efficiency of a directional antenna as compared to an omnidirectional antenna.

General Population/Uncontrolled Environment – Defined by the FCC as an area where RF exposure may occur to persons who are **unaware** of the potential for exposure and who have no control over their exposure. General Population is also referenced as General Public.

Generic Antenna – For the purposes of this report, the use of "Generic" as an antenna model means the antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use its industry specific knowledge of antenna models to select a worst-case scenario antenna to model the site.

Isotropic Antenna – An antenna that is completely non-directional. In other words, an antenna that radiates energy equally in all directions.

Maximum Measurement – This measurement represents the single largest measurement recorded when performing a spatial average measurement.

Maximum Permissible Exposure (MPE) – The rms and peak electric and magnetic field strength, their squares, or the plane-wave equivalent power densities associated with these fields to which a person may be exposed without harmful effect and with acceptable safety factor.

Occupational/Controlled Environment – Defined by the FCC as an area where RF exposure may occur to persons who are **aware** of the potential for exposure as a condition of employment or specific activity and can exercise control over their exposure.

OET Bulletin 65 – Technical guideline developed by the FCC's Office of Engineering and Technology to determine the impact of RF exposure on humans. The guideline was published in August 1997.

OSHA (Occupational Safety and Health Administration) – Under the Occupational Safety and Health Act of 1970, employers are responsible for providing a safe and healthy workplace for their employees. OSHA's role is to promote the safety and health of America's working men and women by setting and enforcing standards; providing training, outreach and education; establishing partnerships; and encouraging continual process improvement in workplace safety and health. For more information, visit www.osha.gov.

Radio Frequency Exposure or Electromagnetic Fields – Electromagnetic waves that are propagated from antennas through space.

Spatial Average Measurement – A technique used to average a minimum of ten (10) measurements taken in a ten (10) second interval from zero (0) to six (6) feet. This measurement is intended to model the average energy a 6-foot tall human body will absorb while present in an electromagnetic field of energy.

Transmitter Power Output (TPO) – The radio frequency output power of a transmitter's final radio frequency stage as measured at the output terminal while connected to a load.

Appendix G – References

The following references can be followed for further information about RF Health and Safety.

Site Safe, LLC http://www.sitesafe.com FCC Radio Frequency Safety http://www.fcc.gov/encyclopedia/radio-frequency-safety National Council on Radiation Protection and Measurements (NCRP) http://www.ncrponline.org Institute of Electrical and Electronics Engineers, Inc., (IEEE) http://www.ieee.org American National Standards Institute (ANSI) http://www.ansi.org Environmental Protection Agency (EPA) http://www.epa.gov/radtown/wireless-tech.html National Institutes of Health (NIH) http://www.niehs.nih.gov/health/topics/agents/emf/ Occupational Safety and Health Agency (OSHA) http://www.osha.gov/SLTC/radiofrequencyradiation/ International Commission on Non-Ionizing Radiation Protection (ICNIRP) http://www.icnirp.org World Health Organization (WHO) http://www.who.int/peh-emf/en/ National Cancer Institute http://www.cancer.gov/cancertopics/factsheet/Risk/cellphones American Cancer Society (ACS) http://www.cancer.org/docroot/PED/content/PED_1_3X_Cellular_Phone_Towers.asp?sit earea=PED European Commission Scientific Committee on Emerging and Newly Identified Health Risks http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr o 022.pdf Fairfax County, Virginia Public School Survey http://www.fcps.edu/fts/safety-security/RFEESurvey/ UK Health Protection Agency Advisory Group on Non-Ionizing Radiation

http://www.hpa.org.uk/webw/HPAweb&HPAwebStandard/HPAweb C/1317133826368 Norwegian Institute of Public Health http://www.fhi.no/dokumenter/545eeg7147.pdf

AT&T Proprietary (Internal use only). Not for use or disclosure outside the AT&T companies, except under written agreement, @2019 AT&T Intellectual property. All rights reserved

Favorable Propagation

Trylon

Prepared For

Structural Analysis

Steven Uecke, P.E. MD P.E. License No. 42852 Date: 02-28-20 Expires: 11-28-20 GILL 02/28/20 PASS (44.6%)

TABLE OF CONTENT

STRUCTURAL ANALYSIS REPORT	2
Standard Conditions	4
Structural Calculations	5
Codes and Standards	6
Equipment Platform Analysis	7
Wind Load on Equipment	7
3-D View	9
Node Numbers	10
Member Labels	11
Member Shapes	12
Dead Load	13
Live Load	14
Ex. Equipment Load	15
Proposed Equipment Load	16
Wind Load x-direction	17
Wind Load z-direction	18
Member Stress Ration	19
Analysis Report	20
References	24
Construction Drawing by Trylon dated 01/21/2020	25
Previous construction drawings prepared by BC Architects Engineers dated 01/13/2011	27

STRUCTURAL ANALYSIS REPORT

SMARTLINK

1362 Mellon Road, Suite 140 Hanover, MD 21076

Attention: Nathan Lenig

Reference: Roof Frame Analysis – Engineering Assessment, located at 9727 Mount Pisgah Road, Silver Spring, MD 20903.

Trylon Job No.:	157156
AT&T Site Name:	GILL
AT&T Site FA#:	10128448
Site Address:	9727 Mount Pisgah Road, Silver Spring, MD 20903
Tower Profile:	Rooftop

Dear Nathan Lenig:

We have been provided with RF information for above-referenced site. AT&T is proposing to add new equipment to the existing equipment platform.

A revised equipment schematic has been provided to us. We have been asked to evaluate this information to determine whether or not the existing roof framing supporting the equipment platform is structurally adequate to safely support the proposed loading changes. The structural evaluation refers to the equipment cabinet installed at the existing rooftop equipment platform located at 9727 Mount Pisgah Road, Silver Spring, MD 20903.

The proposed changes were provided to us in scope of work Trylon drawing package dated 01/21/2020. The equipment platform is located at **133-ft 6-in** elevation. The existing equipment platform framing was verified for the loading from the proposed new and existing equipment cabinet.

The existing platform framing information that we considered in our evaluation is based on the previous construction drawings prepared by "BC Architects Engineers" dated 01/13/2011. The structural members that we considered in our analysis are presented in the attached sketches.

We consider that the existing equipment platform framing is in "like new" condition without cracks or deteriorated parts.

Proposed Equipment Cabinet:

Status	Equipment Cabinet	Qty.	Weight (lbs)
Proposed	NETXTEND Battery Cabinet	1	2610.0
Toposea	DC12	3	56.3
Existing	TE41 Cabinet	1	847.0
	9412 Cabinet	1	230.0
	UMTS Cabinet	1	1200.0
	FLEX Cabinet	1	600.0*

* Weight assumed

CONCLUSIONS AND RECOMMENDATIONS

Based on information provided, our calculations conclude that the existing equipment platform supporting the proposed new and existing equipment cabinet located at **133-ft 6-in** elevation of the Rooftop at the specified address, are **STRUCTURALLY ADEQUATE** to safely support the proposed equipment, subject to the attached Standard Conditions on page 4. The proposed new addition replaces the similar weight in the equipment and the existing roof frame supporting the equipment platform shall be structurally adequate.

Should you have any questions, comments or require additional information, please do not hesitate to call.

Sincerely,

Analysis performed by:

Ashraful Alam, PhD, PE

Standard Conditions for Providing Structural Consulting Services on Existing Structures

- 1. Roof structure is analyzed to the best of our ability using all information that is provided or can be obtained during fieldwork (if authorizes by client). If the existing conditions are not as we have represented in this analysis, we should be contacted to evaluate the significance of the deviation and revise the assessment accordingly.
- 2. The structural analysis has been performed assuming that existing roof slab is in "like new" condition. No allowance was made for excessive corrosion, damaged or missing structural members, loose bolts, misaligned parts, or any reduction in strength due to the age or fatigue of the product.
- 3. The structural analysis provided is an assessment of the primary load carrying capacity of the structure. We provide a limited scope of service. In some cases, we cannot verify the capacity of every structural parameter. In some cases, structural fabrication details are unknown at the time of our analysis, and the detailed field measurement of some of the required details may not be possible. In instances where we cannot perform connection capacity calculations, it is assumed that the existing manufactured connections develop the full capacity of the primary members being connected.
- 4. We cannot be held responsible for temporary and unbalanced loads on the roof structure. Our analysis is based on a particular loading arrangement or as-built field condition. We are not responsible for the methods and means of how the loading arrangement is accomplished by the contractor. These methods and means may include rigging of equipment or hardware to lift and locate, temporary hanging of equipment in locations other than the final arrangement, movement and tie off of tower riggers, personnel, and their equipment, etc.

Structural Calculations

	Project Name		Project Numb	ber
😻 Trylon	Trylon 10128448: GILL Section		157156	
			Page	
	STANDARDS AND EQU	IPMENT LATERAL LOAD	6	
Trylon TSF, Inc.	Ckd. by	Date	Calc. by	Date
	AA		AA	02/28/2020
Applicable Codes and Refere	1005.			
2015 International Building Cod	e			
ASCE 7-10 Minimum Desian Lo	ads for Buildings and Other St	ructures		
AISC Steel Construction Manua	I Fourteenth Edition			
Load Combinations (IBC 2015	LRFD):			
$\begin{array}{lll} 1.4(D+F) \\ 1.2(D+F)+1.6(L+H)+(0) \\ 1.2(D+F)+1.6(L_r \mbox{ or } S \mbox{ or } S \mbox{ or } 1.2(D+F)+1.0W+f_1L+1 \\ 1.2(D+F)+1.0E+f_1L+1 \\ 0.9D+1.0W+1.6H \\ 0.9(D+F)+1.0E+1.6H \end{array}$	0.5(L _r or S or R) R) + 1.6H + (f ₁ L or 0.5W) 1.6H + 0.5(L _r or S or R) .6H + f ₂ S	(Eq. 16-1) (Eq. 16-2) (Eq. 16-3) (Eq. 16-4) (Eq. 16-5) (Eq. 16-6) (Eq. 16-7)		
Load Combinations (IBC 2015	ASD):			
 D + F D + H + F + L D + H + F + (Lr or S or R) D + H + F + 0.75(L) + 0.75 D + H + F + (0.6W or 0.7E) D + H + F + 0.75(0.6W) + D + H + F + 0.75(0.7E) + (0.6D + 0.6W + H) 	5(L _r or S or R) ;) 0.75L + 0.75(L _r or S or R) 0.75L + 0.75S	(Eq. 16-8) (Eq. 16-9) (Eq. 16-10) (Eq. 16-11) (Eq. 16-12) (Eq. 16-13) (Eq. 16-14) (Eq. 16-15)		

0.6(D + F) + 0.7E + H•

Notations:

- D = Dead load of structure and appurtenances, excluding guy assemblies ٠
- F = Load due to fluids with well-defined pressures and maximum heights ٠
- L = Floor live load •
- H = Load due to lateral earth pressures, ground water pressure or pressure of bulk materials ٠
- L_r = Roof live load •
- R = Rain load ٠
- S = Snow load
- W = Load due to wind pressure •
- E = Combined effect of horizontal and vertical earthquake induced forces ٠
- $f_1 = 1$ for floors in places of public assembly in excess of 100 pounds per square foot, and = 0.5 for other live loads ٠
- $f_2 = 0.7$ for roof configurations that do not shed snow off the structure, and = 0.2 for other roof configurations ٠

••••••••	Project Name			Project Numl	ber	
Trylon 10128448: G Section		SILL		157156		
				Page		
Thulon TOE Jac	STANDARD	S AND EQUIPME	NT LATERAL LOAD	7		
Tryion TSF, Inc.	Ckd. by		Date	Calc. by	Date	
	AA			AA	02/28/20	
WIND LOAD ON EQUIPMENT						
ASCE 7-10: Section 29.5.1		V = 115 mpb				
Basic willu speeu		v = 115 mpn				
Velocity pressure exponent coef	(Table 26 6-1)	" K⊣ – 0.85				
Exposure category (Sect. 2.6.5)	(12010-1)	Ra = 0.05				
Height of building		b – 136 50 ft				
Topography factor not significant	(Sect 266)	$K_{-1} = 1.00$				
Nominal height of atmospheric h	oundary laver	$7_{21} = 1.00$				
3-second quet wind enced nowe	r law exponent	$\alpha = 9.5$				
Terrain constant		ω = 0.0 K ₀ = 1.00				
Minimum value for K		$K_{min} = mav(2)$	$11 \times (7/7_{\alpha}) \wedge (2/\alpha) = 0.85) =$	1 351		
Velocity pressure coefficient (Se	rt 2652	$n_{zmin} = \Pi dx(2.01 \times (2/2g)'(2/\alpha), 0.85) = 1.351$				
Velocity pressure	50. 2.0.0.2)	$n_{\rm c} = 0.00256$	$K_{-} \times K_{-} \times K_{+} \times V^{2} \times 1$ pef	$/mnh^2 - 38.887 nef$		
velocity pressure		qn = 0.00230 ×		mpn – 30.001 psr		
NETXTEND Cabinet						
Length of equipment		$L_1 = 3.1 \text{ ft}$				
Width of equipment		W ₁ =3.0 ft				
Height of equipment		$H_1 = 6.0 \text{ ft}$				
Vertical projected area normal to	wind	$A_{f1x} = L_1 \times H_1 =$	= 18.600 ft ²			
Vertical projected area Transver	se to wind	$A_{f1z} = W_1 \times H_1$	= 18.000 ft ²			
Horizontal projected area norma	to wind	$A_{r1} = L_1 \times W_1 =$	9.300 ft ²			
TE41 Cabinet						
Length of equipment		L ₂ = 3.33 ft				
Width of equipment		W ₂ =3.0 ft				
Height of equipment		$H_2 = 6.17 \text{ ft}$				
Vertical projected area normal to	wind	$A_{f2x} = L_2 \times H_2 =$	= 20.546 ft ²			
Vertical projected area Transver	se to wind	$A_{f2z} = W_2 \times H_2$	= 18.510 ft ²			
Horizontal projected area norma	to wind	$A_{r2} = L_2 \times W_2 =$	= 9.990 ft ²			
UMTS Cabinet						
Length of equipment		L ₃ = 2.6 ft				
Width of equipment		W ₃ =2.5 ft				
Height of equipment		$H_3 = 7.4 \text{ ft}$				
Vertical projected area normal to	wind	$A_{f3x} = L_3 \times H_3 =$	= 19.240 ft ²			
Vertical projected area Transver	se to wind	$A_{f3z} = W_3 \times H_3$	= 18.500 ft ²			
Horizontal projected area norma	to wind	$A_{r3} = L_3 \times W_3 =$	6.500 ft ²			
Horizontal projected area norma	to wind	$A_{r4} = L_4 \times W_4 =$	4.367 ft ²			
Wind force (Normal and Trans	verse)					
Pressure coefficient		GCf = 1.9				
Lateral force due to wind (N-dire	ction)	$F_{h1x} = max(16)$	psf, $q_h \times GC_f$) × $A_{f1x} = 13$	74.273 lb		

	Project Name		Project Number	
Trylon 10128448: GILL			157156	
	Section		Page	
Trylon TSE Inc	STANDARDS AND EQUIPMENT LATERAL LOAD		8	
	Ckd. by	Date	Calc. by	Date
	AA		AA	02/28/2020

Lateral force due to wind (N-direction) Lateral force due to wind (T-direction) Lateral force due to wind (N-direction) Lateral force due to wind (T-direction)
$$\begin{split} F_{h2x} &= max(16 \text{ psf}, \, q_h \times GC_f) \times A_{f2x} = \textbf{1518.062} \text{ lb} \\ F_{h2z} &= max(16 \text{ psf}, \, q_h \times GC_f) \times A_{f2z} = \textbf{1367.623} \text{ lb} \\ F_{h3x} &= max(16 \text{ psf}, \, q_h \times GC_f) \times A_{f3x} = \textbf{1421.560} \text{ lb} \end{split}$$

 $F_{h3z} = max(16 \text{ psf}, q_h \times GC_f) \times A_{f3z} = \textbf{1366.884} \text{ lb}$

Loads: BLC 4, WLZ Envelope Only Solution		
1 Total Construction 1		Page - 9
Iryion		
AA	Gill	Feb 4, 2020 at 2:30 PM

Loads: BLC 4, WLZ Envelope Only Solution	the the trace of t	Material Sets Agg Agg Agg Agg Agg Agg Agg Agg Agg Ag
Trylon		Page - 11
AA	Gill	Feb 4, 2020 at 2:32 PM
167166	 	AT&T Gill Equipment Platform r2d
157156	Member Labels	AI&T_Gill_Equipment Platform.r3d

Loads: BLC 4, Envelope Only	WLZ Solution	Maria Mari Maria Maria Mari	Aserial Sets Rigid Aserial Ase Gr.36
		1	1 ayo - 12
		-	
AA		Gill	Feb 4, 2020 at 2:32 PM

Lister BLC 1. D	
Envelope Only Solution	Dara 10
Trylon	Page - 13
AA Gill	Feb 4, 2020 at 2:32 PM
157156 Dead Load	AT&T_Gill_Equipment Platform.r3d

eopsf	-Opsf	
Loads: BLC 2, LL Envelope Only Solution Trylon		Page - 14
Loads: BLC 2, LL Envelope Only Solution Trylon AA	Gill	Page - 14 Feb 4, 2020 at 2:33 PM
Loads: BLC 2, LL Envelope Only Solution Trylon AA	Gill	Page - 14 Feb 4, 2020 at 2:33 PM

	600b 400b	
Loads: BLC 5, EX. EQ Envelope Only Solution		
Trylon		Page - 15
AA	Gill	Feb 6, 2020 at 3:31 PM
157156	Ex. Equipment Load	AT&T_Gill_Equipment Platform.r3d
107 100		

Loads: BLC 6, NEW EQ		
		Page - 16
		Fage - 10
AA	Gill	Feb 6, 2020 at 3:31 PM
157156	New Equipment Load	AT&T_Gill_Equipment Platform.r3d

Loads: BLC 3, WLX Envelope Only Solution		
		Page - 17
		Faye - 17
AA 457450		TED 28, 2020 AT 10:26 AM
157156	Wind Load x-direction	AI&I_GIII_Equipment Platform.r3d

Loads: BLC 4, Envelope Only	WLZ Solution	Image: wide wide wide wide wide wide wide wide	
Trylon			Page - 18
		Gill	Feb 28, 2020 at 10:27 AM
157156		Wind Load z-direction	AT&T Gill Equipment Platform r3d
157156		Wind Load z-direction	AI&I_GIII_Equipment Platform.r3d

TrylonPage - 19AAGillFeb 28, 2020 at 10:27 AM157156Member Stress RatioAT&T_Gill_Equipment Platform.r3d	Member Code Checks Displayed (Enve		Code Check (Env) 90-10 7-5-90 0-50
Fage - 19AAGillFeb 28, 2020 at 10:27 AM157156Member Stress RatioAT&T_Gill_Equipment Platform.r3d	Envelope Only Solution		Page - 19
AA Gill Feb 28, 2020 at 10:27 AM 157156 Member Stress Ratio AT&T_Gill_Equipment Platform.r3d			Faye - 19
157156 Member Stress Ratio AT&T_Gill_Equipment Platform.r3d	AA	GIII	rep 28, 2020 at 10:27 AM
	157156	Member Stress Ratio	AT&T_Gill_Equipment Platform.r3d

Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
1	N1	Ō	Ō	0	Ó	
2	N2	192	0	0	0	
3	N3	0	0	140	0	
4	N4	192	0	140	0	
5	N5	256	0	0	0	
6	N6	256	0	137	0	
7	N7	216	0	140	0	
8	N8	210	0	140	0	
9	N9	204	0	140	0	
10	N10	198	0	140	0	
11	N11	192	0	137	0	
12	N12	216	0	137	0	
13	N13	210	0	137	0	
14	N14	204	0	137	0	
15	N15	198	0	137	0	
16	N16	12	0	0	0	
17	N17	12	0	140	0	
18	N18	180	0	0	0	
19	N19	180	0	140	0	
20	N20	12	0	40	0	
21	N21	180	0	40	0	
22	N22	12	0	100	0	
23	N23	180	0	100	0	
24	N24	219	0	0	0	
25	N25	219	0	137	0	
26	N26	256	0	68.5	0	
27	N27	219	0	68.5	0	
28	N28	180	0	68.5	0	
29	N29	60	0	40	0	
30	N30	90	0	40	0	
31	N31	60	0	100	0	
32	N32	90	0	100	0	
33	N33	120	0	40	0	
34	N34	60	36	40	0	
35	N35	90	36	40	0	
36	N36	60	36	100	0	
37	N37	90	36	100	0	
38	N38	120	36	40	0	

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N1	N5		W16x26	Beam	Wide Flange	A992	Typical
2	M2	N3	N7		W16x26	Beam	Wide Flange	A992	Typical
3	M3	N11	N6		C12x20.7	Beam	Channel	A36 Gr.36	Typical
4	M4	N4	N11		RIGID	None	None	RIGID	Typical
5	M5	N10	N15		RIGID	None	None	RIGID	Typical
6	M6	N9	N14		RIGID	None	None	RIGID	Typical
7	M7	N8	N13		RIGID	None	None	RIGID	Typical
8	M8	N7	N12		RIGID	None	None	RIGID	Typical
9	M9	N17	N16		W8x18	Beam	Wide Flange	A992	Typical
10	M10	N19	N18		W8x18	Beam	Wide Flange	A992	Typical
11	M11	N20	N21		W8x21	Beam	Wide Flange	A992	Typical
12	M12	N22	N23		W8x21	Beam	Wide Flange	A992	Typical
13	M13	N6	N5		W12x26	Beam	Wide Flange	A992	Typical
14	M14	N25	N24		W8x18	Beam	Wide Flange	A992	Typical
15	M15	N28	N27		W8x18	Beam	Wide Flange	A992	Typical
16	M16	N27	N26		W8x18	Beam	Wide Flange	A992	Typical
17	M17	N31	N36		RIGID	None	None	RIGID	Typical
18	M18	N32	N37		RIGID	None	None	RIGID	Typical
19	M19	N29	N34		RIGID	None	None	RIGID	Typical
20	M20	N30	N35		RIGID	None	None	RIGID	Typical
21	M21	N33	N38		RIGID	None	None	RIGID	Typical

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	[Lcomp bot[in]	L-torqu	Kyy	Kzz	Cb	Function
1	M1	W16x26	256	6	6	Lbyy						Lateral
2	M2	W16x26	216			Lbyy						Lateral
3	M3	C12x20.7	64			Lbyy						Lateral
4	M9	W8x18	140			Lbyy						Lateral
5	M10	W8x18	140			Lbyy						Lateral
6	M11	W8x21	168			Lbyy						Lateral
7	M12	W8x21	168			Lbyy						Lateral
8	M13	W12x26	137			Lbyy						Lateral
9	M14	W8x18	137			Lbyy						Lateral
10	M15	W8x18	39			Lbyy						Lateral
11	M16	W8x18	37			Lbyy						Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	DL	DĹ	-	-1	-				7	
2	LL	LL							7	
3	WLX	WLX				2				
4	WLZ	WLZ				3				
5	EX. EQ	DL				4				
6	NEW EQ	DL				2				
7	BLC 1 Transient Area	None						22		
8	BLC 2 Transient Area	None						22		

Joint Loads and Enforced Displacements (BLC 3 : WLX)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/
1	N34	L	Х	1329
2	N37	L	Х	1368

Joint Loads and Enforced Displacements (BLC 4 : WLZ)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/
1	N34	L	Z	1374
2	N35	L	Z	1519
3	N38	L	Z	1519

Joint Loads and Enforced Displacements (BLC 5 : EX. EQ)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/
1	N35	L	Y	-847
2	N38	L	Y	-1200
3	N36	L	Y	-600
4	N37	L	Y	-230

Joint Loads and Enforced Displacements (BLC 6 : NEW EQ)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/
1	N34	L	Y	-2610
2	N22	L	Y	-168.9

Member Area Loads (BLC 1 : DL)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	N17	N22	N23	N19	Y	A-B	-15
2	N20	N22	N23	N21	Y	A-B	-15
3	N16	N20	N21	N18	Y	A-B	-15
4	N28	N27	N25	N19	Y	A-B	-15
5	N28	N27	N24	N18	Y	A-B	-15
6	N25	N6	N26	N27	Y	A-B	-15
7	N27	N26	N5	N24	Y	A-B	-15

Member Area Loads (BLC 2 : LL)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	N17	N22	N23	N19	Y	A-B	-60
2	N20	N22	N23	N21	Y	A-B	-60
3	N16	N20	N21	N18	Y	A-B	-60
4	N28	N27	N25	N19	Y	A-B	-60
5	N28	N27	N24	N18	Y	A-B	-60
6	N25	N6	N26	N27	Y	A-B	-60
7	N27	N26	N5	N24	Y	A-B	-60

Load Combinations

	Description Sol	PD	.SR	BLC	Fact	.BLC	Fact	BLC	Fact	.BLC	Fact	BLC	Fact	BLC	Fact	BLC	Fact	.BLC	Fact	BLC	Fact	BLC	Fact
1	IBC 16-1 Yes	Υ		DL	1.4																		
2	IBC 16-2 (a) Yes	Υ		DL	1.2	LL	1.6	LLS	1.6														
3	IBC 16-3 (Yes	Υ		DL	1.2	W	.5																
4	IBC 16-3 (Yes	Υ		DL	1.2	WLZ	.5																
5	IBC 16-3 (Yes	Υ		DL	1.2	W	5																
6	IBC 16-3 (Yes	Υ		DL	1.2	WLZ	5																
7	IBC 16-4 (Yes	Υ		DL	1.2	W	1	LL	.5	LLS	1												
8	IBC 16-4 (Yes	Υ		DL	1.2	WLZ	1	LL	.5	LLS	1												
9	IBC 16-4 (Yes	Υ		DL	1.2	W	-1	LL	.5	LLS	1												
10	IBC 16-4 (Yes	Υ		DL	1.2	WLZ	-1	LL	.5	LLS	1												
11	IBC 16-6 (a) Yes	Υ		DL	.9	W	1																
12	IBC 16-6 (b) Yes	Υ		DL	.9	WLZ	1																
13	IBC 16-6 (c) Yes	Υ		DL	.9	W	-1																
14	IBC 16-6 (d) Yes	Υ		DL	.9	WLZ	-1																

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N3	max	Ō	1	6608.953	2	63.057	8	Ō	1	.056	10	8.587	2
2		min	0	1	1897.057	11	-62.549	10	0	1	056	8	2.429	11
3	N2	max	0	1	12573.636	2	36.246	8	0	1	.025	8	-1.887	13
4		min	0	1	3264.065	13	-33.354	10	0	1	024	10	-3.865	2
5	N1	max	1108.183	9	6854.898	2	0	1	0	1	.001	10	0	1
6		min	-1055.206	11	2394.906	11	0	1	0	1	001	8	0	1
7	N4	max	1192.525	9	10967.955	2	0	1	.891	2	.11	11	0	1
8		min	-1125.377	11	2352.354	13	0	1	.182	11	115	9	0	1
9	N36	max	72.159	13	0	1	8.286	2	0	1	0	1	0	1
10		min	-151.227	7	0	1	2.816	11	0	1	0	1	0	1
11	N37	max	110.693	13	0	1	4.791	2	0	1	0	1	0	1
12		min	-106.848	7	0	1	1.31	13	0	1	0	1	0	1
13	N34	max	22.085	13	0	1	1431.701	10	0	1	0	1	0	1
14		min	-254.171	7	0	1	-1442.759	8	0	1	0	1	0	1
15	N35	max	88.845	13	0	1	1550.559	10	0	1	0	1	0	1
16		min	-101.013	7	0	1	-1551.917	8	0	1	0	1	0	1
17	N38	max	200.464	9	0	1	1517.385	10	0	1	0	1	0	1
18		min	-1.266	11	0	1	-1525.004	8	0	1	0	1	0	1
19	Totals:	max	2697	9	37005.443	2	4412	10						
20		min	-2697	11	10758.835	11	-4412	8						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code C	.Loc[in]	LC	Shear	Loc[in]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y	.phi*Mn zCb	Eqn
1	M1	W16x26	.262	192	2	.085	192	y	2	105423.4	345600	20.55	59.959 1	H1-1b
2	M2	W16x26	.081	191.25	2	.069	191.25	y	2	46435.588	345600	20.55	139.651 3	H1-1b
3	M3	C12x20.7	.079	0	2	.066	24	y	2	140262.4	196992	7.438	69.12 1	H1-1b
4	M9	W8x18	.409	99.167	2	.112	140	y	2	91863.311	236700	17.475	50.708 1	H1-1b
5	M10	W8x18	.414	99.167	2	.115	140	ý	2	91863.311	236700	17.475	49.534 1	H1-1b
6	M11	W8x21	.446	77	2	.213	0	y	10	78201.637	277200	21.337	56.95 1	H1-1b
7	M12	W8x21	.258	77	2	.082	0	ý	2	78201.637	277200	21.337	56.703 1	H1-1b
8	M13	W12x26	.083	68.5	9	.014	137	y	2	187087.8	344250	30.637	121.924 1	H1-1b
9	M14	W8x18	.128	68.5	2	.040	0	y	2	95687.229	236700	17.475	51.705 1	H1-1b
10	M15	W8x18	.003	19.5	9	.001	39	y	1	219949.2	236700	17.475	63.75 1	H1-1b
11	M16	W8x18	.002	18.5	9	.001	0	ý	2	221568.4	236700	17.475	63.75 1	H1-1b

References

Y:/Drawings - 2008/AT&7/Roof Top/Gill_Chateau Apartments - 10128448/CD's REVISED REV-10 08-16-10/S1.dwg

SITE SAFE

Smartlink on behalf of AT&T Mobility, LLC Site FA – 10128448 Site ID – MDL03821 USID – 100205 Site Name – GILL (MRWSH034472)

9727 Mount Pisgah Road Silver Spring, MD 20903

Latitude: N39-01-00.00 Longitude: W76-58-30.00 Structure Type: Rooftop

R

Report generated date: March 24, 2020 Report by: Leo Romero Customer Contact: Lauren Kersey

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

Sitesafe logo is a registered trademark of Site Safe, LLC. All rights reserved.

Table of Contents

1	GENERAL SITE SUMMARY	3
	1.1 Report Summary 1.2 Fall Arrest Anchor Point Summary 1.2 Summary	3
~		4
2	SCALE MAPS OF SITE	5
3	ANTENNA INVENTORY	7
4	EMISSION PREDICTIONS	10
5	SITE COMPLIANCE	14
	5.1 SITE COMPLIANCE STATEMENT5.2 ACTIONS FOR SITE COMPLIANCE	.14 .14
6	REVIEWER CERTIFICATION	16
A	PPENDIX A – STATEMENT OF LIMITING CONDITIONS	17
A	PPENDIX B – REGULATORY BACKGROUND INFORMATION	18
	FCC Rules and Regulations	.18 .19
A	PPENDIX C – SAFETY PLAN AND PROCEDURES	20
A	PPENDIX D – RF EMISSIONS	21
A	PPENDIX E – ASSUMPTIONS AND DEFINITIONS	22
	General Model Assumptions Use of Generic Antennas	.22 .22
A	PPENDIX F – DEFINITIONS	23
A	PPENDIX G – REFERENCES	25

1 General Site Summary

1.1 Report Summary

AT&T Mobility, LLC	Summary
Max Cumulative Simulated RFE Level on the	11,435.0% General Public Limit 1" in front of AT&T
Rooftop	Mobility, LLC's Gamma Sector Antenna #8
Max Cumulative Simulated RFE Level on the	11,435.0% General Public Limit 1" in front of AT&T
Rooftop Walking Surface	Mobility, LLC's Gamma Sector Antenna #8
Max Cumulative Simulated RFE Level on the	<1% General Public Limit
Ground	
Compliant per FCC Rules and Regulations?	Will Be Compliant
Compliant per AT&T Mobility, LLC's Policy?	No

The following documents were provided by the client and were utilized to create this report:

RFDS: WASHINGTON-D.C.-MARYLAND_WASHINGTON-DC-BALTIMORE_GILL_2020-Cell-Site-RF-Modifications_Split-Sector_006650_2251A0S58F_10128448_100205_10-08-2019_Final-Approved_v1.00

CD's: 10128448.AE201.REV C.GILL.100205.01142020

RF Powers Used: MAX RRH Powers

1.2 Fall Arrest Anchor Point Summary

Fall Arrest Anchor & Parapet Info	Parapet Available (Y/N)	Parapet Height (inches)	Fall Arrest Anchor Available (Y/N)
Roof Safety Info	Ν	0	Ν

1.3 Signage Summary

1 AT&T Ŷ 1 1 Signage Locations Warning Information 1 Information 2 Notice Notice 2 Caution Caution 2 Warning 2 Barriers Access 2 Point(s) Alpha Beta Gamma

a. Pre-Site Visit AT&T Signage (Existing Signage)

Note: All existing signage was documented during a previous site visit on 6/27/2017.

	b. Floposed F	alar signage							
AT&T Signage Locations		INFORMATION	Notice	Hosce	CAUTION	CAUTION			¥ ∑
	Information 1	Information 2	Notice	Notice 2	Caution	Caution 2	Warning	Warning 2	Barriers
Access									
Point(s)									
Alpha						4			Х
Beta						9			X
Gamma			-					4	Х

b. Proposed AT&T Signage

2 Scale Maps of Site

The following diagrams are included:

- Site Scale Map
- ノノノ
- RF Exposure Diagram RF Exposure Diagram Detailed View West AT&T Mobility, LLC Contribution

3 Antenna Inventory

The following antenna inventory was obtained by the customer and was utilized to create the site model diagrams:

				TX Freq		Az	Hor BW	Ant Len		Power	Power	Misc	тх	Total ERP	Ant Gain			
Ant ID	Operator	Antenna Make & Model	Туре	(MHz)	Technology	(Deg)	(Deg)	(ft)	Power	Туре	Unit	Loss	Count	(Watts)	(dBd)	Z	MDT	EDT
1	AT&T MOBILITY LLC	Kathrein-Scala 742-264	Panel	850	UMTS	0	68.4	4.3	80	TPO	Watt	0	1	1267.9	12	6.3'	0°	2°
2	AT&T MOBILITY LLC	Commscope NNH4-65C-R6	Panel	737	LTE	0	75	8	160	TPO	Watt	0	1	3631.8	13.56	4.5'	0°	5°
2	AT&T MOBILITY LLC (Proposed)	Commscope NNH4-65C-R6	Panel	763	LTE	0	75	8	160	TPO	Watt	0	1	3631.8	13.56	4.5'	0°	5°
2	AT&T MOBILITY LLC	Commscope NNH4-65C-R6	Panel	1900	LTE	0	59	8	160	TPO	Watt	0	1	5496.9	15.36	4.5'	0°	2°
2	AT&T MOBILITY LLC	Commscope NNH4-65C-R6	Panel	2110	LTE	0	61	8	80	TPO	Watt	0	1	2878	15.56	4.5'	0°	2°
2	AT&T MOBILITY LLC	Commscope NNH4-65C-R6	Panel	2160	AWS3	0	61	8	80	TPO	Watt	0	1	2878	15.56	4.5'	0°	2°
3	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	2300	LTE	0	61.1	4	100	TPO	Watt	0	1	2666.9	14.26	6.5'	0°	5°
4	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	2300	LTE	150	61.1	4	100	TPO	Watt	0	1	2666.9	14.26	7.5'	0°	6°
4	AT&T MOBILITY LLC	Commscope NNH4-65C-R6	Panel	737	LTE	110	75	8	160	TPO	Watt	0	1	3631.8	13.56	5.5'	0°	10°
4	AT&T MOBILITY LLC (Proposed)	Commscope NNH4-65C-R6	Panel	763	LTE	110	75	8	160	TPO	Watt	0	1	3631.8	13.56	5.5'	0°	12°
4	AT&T MOBILITY LLC	Commscope NNH4-65C-R6	Panel	1900	LTE	110	59	8	160	TPO	Watt	0	1	5496.9	15.36	5.5'	0°	5°
4	AT&T MOBILITY LLC	Commscope NNH4-65C-R6	Panel	2110	LTE	110	61	8	80	TPO	Watt	0	1	2878	15.56	5.5'	0°	5°
5	AT&T MOBILITY LLC	Commscope NNH4-65C-R6	Panel	2160	AWS3	110	61	8	80	TPO	Watt	0	1	2878	15.56	5.5'	0°	5°
6	AT&T MOBILITY LLC	Kathrein-Scala 742-264	Panel	850	UMTS	110	68.4	4.3	80	TPO	Watt	0	1	1267.9	12	7.3'	0°	2°
7	AT&T MOBILITY LLC	Kathrein-Scala 742-264	Panel	850	UMTS	270	68.4	4.3	80	TPO	Watt	0	1	1267.9	12	4.3'	2°	2°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	Panel	737	LTE	260	36.3	6	80	TPO	Watt	0	1	2128.6	14.25	3.5'	0°	6°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	Panel	763	LTE	260	36.3	6	80	TPO	Watt	0	1	2128.6	14.25	3.5'	0°	6°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	Panel	1900	LTE	260	32.3	6	160	TPO	Watt	0	1	6139.3	15.84	3.5'	0°	4°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	Panel	2110	LTE	260	27.9	6	80	TPO	Watt	0	1	3373.6	16.25	3.5'	0°	4°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	Panel	2160	AWS3	260	27.9	6	80	TPO	Watt	0	1	3373.6	16.25	3.5'	0°	4°

			_	TX Freq		Az	Hor BW	Ant Len	_	Power	Power	Misc	тх	Total ERP	Ant Gain			
Ant ID	Operator	Antenna Make & Model	Туре	(MHz)	Technology	(Deg)	(Deg)	(ft)	Power	Туре	Unit	Loss	Count	(Watts)	(dBd)	Z	MDT	EDT
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Panel	737	LTE	260	33.8	6	80	TPO	Watt	0	1	2128.6	14.25	3.5'	0°	6°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Panel	763	LTE	260	33.8	6	80	TPO	Watt	0	1	2128.6	14.25	3.5'	0°	6°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Panel	1900	LTE	260	33.9	6	160	TPO	Watt	0	1	6153.5	15.85	3.5'	0°	4°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Panel	2110	LTE	260	27.1	6	80	TPO	Watt	0	1	3373.6	16.25	3.5'	0°	4°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Panel	2160	AWS3	260	27.1	6	80	TPO	Watt	0	1	3373.6	16.25	3.5'	0°	4°
9	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	Panel	763	LTE	260	36.3	6	80	TPO	Watt	0	1	2128.6	14.25	3.5'	0°	6°
9	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	Panel	2300	LTE	260	23.6	6	100	TPO	Watt	0	1	3845.9	15.85	3.5'	0°	4°
9	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	Panel	737	LTE	260	36.3	6	80	TPO	Watt	0	1	2128.6	14.25	3.5'	0°	6°
9	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Panel	737	LTE	260	33.8	6	80	TPO	Watt	0	1	2128.6	14.25	3.5'	0°	6°
9	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Panel	763	LTE	260	33.8	6	80	TPO	Watt	0	1	2128.6	14.25	3.5'	0°	6°
9	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Panel	2300	AWS3	260	25.5	6	100	TPO	Watt	0	1	3845.9	15.85	3.5'	0°	4°
10	CRICKET COMMUNICATIONS (Decommissioned)	Generic Panel	Panel	2100		60	65	4.6	0	ERP	Watt	0	0	0	15.23	15.7'	0°	0°
11	T-MOBILE	Generic Panel	Panel	700		30	65	6.3	160	TPO	Watt	0	0	2884.8	12.56	13.9'	0°	0°
12	T-MOBILE	Ericsson AIR 32 B4A B2P	Panel	1900		30	65	4.9	120	TPO	Watt	0	0	4625.7	15.86	14.5'	0°	0°
12	T-MOBILE	Ericsson AIR 32 B4A B2P	Panel	2100		30	65	4.9	120	TPO	Watt	0	0	4625.7	15.86	14.5'	0°	0°
13	T-MOBILE	Ericsson AIR 21 B2A B4P	Panel	1900		30	65	4.7	120	TPO	Watt	0	0	4132.2	15.37	14.7'	0°	0°
14	T-MOBILE	Ericsson AIR 32 B4A B2P	Panel	1900		150	65	4.9	120	TPO	Watt	0	0	4625.7	15.86	20.5'	0°	0°
14	T-MOBILE	Ericsson AIR 32 B4A B2P	Panel	2100		150	65	4.9	120	TPO	Watt	0	0	4625.7	15.86	20.5'	0°	0°
15	T-MOBILE	Ericsson AIR 21 B2A B4P	Panel	1900		150	65	4.7	120	TPO	Watt	0	0	4132.2	15.37	20.7'	0°	0°
16	T-MOBILE	Generic Panel	Panel	700		150	65	4.6	160	TPO	Watt	0	0	2618.9	12.14	20.7'	0°	0°
17	T-MOBILE	Ericsson AIR 32 B4A B2P	Panel	1900		270	65	4.9	120	TPO	Watt	0	0	4625.7	15.86	4.5'	0°	0°
17	T-MOBILE	Ericsson AIR 32 B4A B2P	Panel	2100		270	65	4.9	120	TPO	Watt	0	0	4625.7	15.86	4.5'	0°	0°
18	T-MOBILE	Generic Panel	Panel	700		270	65	6.3	160	TPO	Watt	0	0	2884.8	12.56	3.9'	0°	0°
19	T-MOBILE	Ericsson AIR 21 B2A B4P	Panel	1900		270	65	4.7	120	TPO	Watt	0	0	4132.2	15.37	4.7'	0°	0°
20	SPRINT	Generic Panel	Panel	2500		100	65	4.1	160	TPO	Watt	0	0	5071.3	15.01	17'	0°	0°
21	SPRINT	Generic Panel	Panel	862		80	65	6.3	100	TPO	Watt	0	0	2202.9	13.43	15.9'	0°	0°

AT&T Proprietary (Internal use only). Not for use or disclosure outside the AT&T companies, except under written agreement. ©2019 AT&T Intellectual property. All rights reserved.

Ant ID	Operator	Antenna Make & Model	Туре	TX Freq (MHz)	Technology	Az (Deg)	Hor BW (Deg)	Ant Len (ft)	Power	Power Type	Power Unit	Misc Loss	TX Count	Total ERP (Watts)	Ant Gain (dBd)	z	MDT	EDT
21	SPRINT	Generic Panel	Panel	1900		80	65	6.3	180	TPO	Watt	0	0	7608	16.26	15.9'	0°	0°
22	SPRINT	Generic Panel	Panel	862		270	65	6.3	100	TPO	Watt	0	0	2202.9	13.43	15.9'	0°	0°
22	SPRINT	Generic Panel	Panel	1900		270	65	6.3	180	TPO	Watt	0	0	7608	16.26	15.9'	0°	0°
23	SPRINT	Generic Panel	Panel	2500		280	65	4.1	160	TPO	Watt	0	0	5071.3	15.01	17'	0°	0°
24	SPRINT	Generic Panel	Panel	2500		0	65	4.1	160	TPO	Watt	0	0	5071.3	15.01	17'	0°	0°
25	SPRINT	Generic Panel	Panel	862		0	65	6.3	100	TPO	Watt	0	0	2202.9	13.43	16.9'	0°	0°
25	SPRINT	Generic Panel	Panel	1900		0	65	6.3	180	TPO	Watt	0	0	7608	16.26	16.9'	0°	0°
26	SPRINT	Generic Panel	Panel	2500		180	65	4.1	40	TPO	Watt	0	0	1267.8	15.01	13'	0°	0°
27	SPRINT	Generic Microwave	Aperture	80000		190	2	2	0.01	TPO	Watt	0	0	769.1	48.86	19'	0°	0°
28	SPRINT	Generic Panel	Panel	2500		260	65	4.1	40	TPO	Watt	0	0	1267.8	15.01	13'	0°	0°
29	SPRINT	Generic Microwave	Aperture	23000		280	2	0	0.02	TPO	Watt	0	0	36.9	32.66	15'	0°	0°
30	SPRINT	Generic Panel	Panel	2500		355	65	4.1	40	TPO	Watt	0	0	1267.8	15.01	13'	0°	0°
31	UNKNOWN CARRIER	Generic Microwave	Aperture	18000		90	2	2	0.01	TPO	Watt	0	0	58.3	37.66	19'	0°	0°
32	UNKNOWN CARRIER	Generic Microwave	Aperture	23000		90	2	1	0.01	TPO	Watt	0	0	18.5	32.66	16'	0°	0°
33	UNKNOWN CARRIER	Generic Omni	Omni	850		0	360	14	100	ERP	Watt	0	0	100	9.97	18'	0°	0°
34	UNKNOWN CARRIER	Generic Panel	Panel	5800		160	90	2.2	20	ERP	Watt	0	0	20	16.01	19.9'	0°	0°
35	UNKNOWN CARRIER	Generic Microwave	Aperture	80000		340	2	1	0.01	TPO	Watt	0	0	172.2	42.36	16'	0°	0°
36	UNKNOWN CARRIER	Generic Microwave	Aperture	18000		10	2	2	0.01	TPO	Watt	0	0	58.3	37.66	17'	0°	0°
37	UNKNOWN CARRIER	Generic Omni	Omni	450		0	360	4.7	100	ERP	Watt	0	0	100	2.97	17.6'	0°	0°
38	UNKNOWN CARRIER	Generic Omni	Omni	450		0	360	4.7	100	ERP	Watt	0	0	100	2.97	17.6'	0°	0°
39	UNKNOWN CARRIER	Generic Omni	Omni	850		0	360	14	100	ERP	Watt	0	0	100	9.97	18'	0°	0°
40	UNKNOWN CARRIER	Generic Microwave	Aperture	18000		170	0	0	0.01	TPO	Watt	0	0	58.3	37.66	17'	0°	0°
41	UNKNOWN CARRIER	Generic Omni	Omni	850		0	360	14	100	ERP	Watt	0	0	100	9.97	18'	0°	0°

Note: The Z reference indicates the bottom of the antenna height above the main site level unless otherwise indicated. Effective Radiated Power (ERP) is provided by the operator or based on Sitesafe experience. The values used in the modeling may be greater than are currently deployed. For other operators at this site the use of "Generic" as an antenna model or "Unknown" for a wireless operator means the information with regard to operator, their FCC license and/or antenna information was not available nor could it be secured while on site. Other operator's equipment, antenna models and powers used for modeling are based on obtained information or Sitesafe experience. Proposed equipment is tagged as (Proposed) under Operator or Antenna Make & Model.

Note: The 763 MHz LTE technology is being added to existing antennas.

Emission Predictions 4

In the RF Exposure Simulations below, all heights are reflected with respect to main site level. In most rooftop cases this is the height of the main rooftop and in other cases this can be ground level. Each different height area, rooftop, or platform level is labeled with its height relative to the main site level. Emissions are calculated appropriately based on the relative height and location of that area to all antennas. The total analyzed elevations in the below RF Exposure Simulations are listed below.

MAIN LEVEL = 0' PH1 and PH3 = 10' PH2 = 15' AT&T EQP = 2'

The Antenna Inventory heights are referenced to the same level.

RF Exposure Simulation For: GILL Composite Diagram

% of FCC Public Exposure Limit Spatial Average 0' - 6'

Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

RF Exposure Simulation For: GILL Detail View West

Proposed Barriers/

Signs

Barrier

0 8.6 17.2 www.sitesafe.com Site Name:GILL 3/17/2020 6:36:56 PM Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

RF Exposure Simulation For: GILL AT&T Mobility, LLC Contribution

% of FCC Public Exposure Limit Spatial Average 0' - 6'

Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

5 Site Compliance

5.1 Site Compliance Statement

Upon evaluation of the cumulative RF emission levels from all operators at this site, RF hazard signage and antenna locations, Sitesafe has determined that:

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

Based on measurement or predictions, other wireless operators on this site may be out of RF exposure compliance with FCC regulations on this site. We recommend that those operators review this site with respect to RF exposure compliance.

The compliance determination is based on General Public RFE levels derived from theoretical modeling, RF signage placement, proposed antenna inventory and the level of restricted access to the antennas at the site. Any deviation from the proposed AT&T Mobility, LLC deployment plan could result in the site being rendered non-compliant.

Modeling is used for determining compliance and the percentage of MPE contribution.

5.2 Actions for Site Compliance

Based on FCC regulations, common industry practice, and our understanding of AT&T Mobility, LLC's RF Safety Policy requirements, this section provides a statement of recommendations for site compliance. Recommendations have been proposed based on our understanding of existing access restrictions, signage, and an analysis of predicted RFE levels.

AT&T Mobility, LLC will be made compliant if the following changes are implemented:

AT&T Mobility, LLC Proposed Alpha Sector Location

(2) Yellow Caution 2 sign(s) required one on each side of the sector.

Install a barrier that is 4' long, comprised of (1) segment(s) and an estimated (2) stanchions, as depicted in the site scale map.

Install (1) total Caution 2 sign(s) on the proposed barrier stanchions.

/ 4' segment: (1) Caution 2 sign(s)

Install a barrier that is 7' long, comprised of (1) segment(s) and an estimated (2) stanchions, as depicted in the site scale map.

Install (1) total Caution 2 sign(s) on the proposed barrier stanchions.

J 7' segment: (1) Caution 2 sign(s)

AT&T Mobility, LLC Proposed Beta Sector Location

(2) Yellow Caution 2 sign(s) required one on each side of the sector. Install a barrier that is 33' long, comprised of (3) segment(s) and an estimated (7) stanchions, as depicted in the site scale map.

Install (6) total Caution 2 sign(s) on the proposed barrier stanchions.

11' segment: (2) Caution 2 sign(s)

14' segment: (3) Caution 2 sign(s)

8' segment: (1) Caution 2 sign(s)

Install a barrier that is 4' long, comprised of (1) segment(s) and an estimated (2) stanchions, as depicted in the site scale map.

Install (1) total Caution 2 sign(s) on the proposed barrier stanchions.

/ 4' segment: (1) Caution 2 sign(s)

AT&T Mobility, LLC Proposed Gamma Sector Location

(2) Red Warning 2 sign(s) required one on each side of the sector. Install a barrier that is 6' long, comprised of (1) segment(s) and an estimated (2) stanchions, as depicted in the site scale map.

Install (1) total Warning 2 sign(s) on the proposed barrier stanchions.

6' segment: (1) Warning 2 sign(s)

Install a barrier that is 8' long, comprised of (1) segment(s) and an estimated (2) stanchions, as depicted in the site scale map.

Install (1) total Warning 2 sign(s) on the proposed barrier stanchions.

) 8' segment: (1) Warning 2 sign(s)

AT&T Mobility, LLC is predicted to exceed 5% of the GP limit in an area near T-Mobile antennas #17, #18 and #19 that is predicted to exceed that limit and no signs or barriers are in place. AT&T Mobility, LLC should work with T-Mobile to ensure compliance at this location.

Install a barrier that is 14' long on the right side of T-Mobile's antennas #17, #18 and #19, comprised of (2) segment(s) and an estimated (3) stanchions, as depicted in the site scale map

Recommended per AT&T Mobility, LLC's Policy:

Site Access Location

Sitesafe recommends that all AT&T Mobility, LLC signage be removed from all access points, as they are not required by AT&T Mobility, LLC's signage policy.

Notes:

-) Signage on the barriers should be placed on the stanchions no more than 8' apart from each other.
-) Barriers were only recommended in areas predicted to exceed the General Public MPE limit greater than 6' from the unprotected roof edges. All other predicted to exceed areas are within 6' of the unprotected roof edges.
- Any existing signage that conflicts with the proposed signage in this report should be removed per AT&T's Signage Posting Rules.
-) Ensure all existing signage documented in this report still exist at the site, unless otherwise indicated.

Other Operator Antennas:

T-Mobile should review their Gamma sector.

6 Reviewer Certification

The reviewer whose signature appears below hereby certifies and affirms:

That I am an employee of Site Safe, LLC, in Vienna, Virginia, at which place the staff and I provide RF compliance services to clients in the wireless communications industry; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission (FCC) as well as the regulations of the Occupational Safety and Health Administration (OSHA), both in general and specifically as they apply to the FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields; and

That I have thoroughly reviewed this Site Compliance Report and believe it to be true and accurate to the best of my knowledge as assembled by and attested to by Leo Romero.

March 24, 2020

Appendix A – Statement of Limiting Conditions

Sitesafe has provided computer generated model(s) in this Site Compliance Report to show approximate dimensions of the site, and the model is included to assist the reader of the compliance report to visualize the site area, and to provide supporting documentation for Sitesafe's recommendations.

Sitesafe may note in the Site Compliance Report any adverse physical conditions, such as needed repairs, that Sitesafe became aware of during the normal research involved in creating this report. Sitesafe will not be responsible for any such conditions that do exist or for any engineering or testing that might be required to discover whether such conditions exist. Because Sitesafe is not an expert in the field of mechanical engineering or building maintenance, the Site Compliance Report must not be considered a structural or physical engineering report.

Sitesafe obtained information used in this Site Compliance Report from sources that Sitesafe considers reliable and believes them to be true and correct. Sitesafe does not assume any responsibility for the accuracy of such items that were furnished by other parties. When conflicts in information occur between data collected by Sitesafe provided by a second party and data collected by Sitesafe, the data will be used.

Appendix B – Regulatory Background Information

FCC Rules and Regulations

In 1996, the Federal Communications Commission (FCC) adopted regulations for evaluating the effects of RF emissions in 47 CFR § 1.1307 and 1.1310. The guideline from the FCC Office of Engineering and Technology is Bulletin 65 ("OET Bulletin 65"), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, Edition 97-01, published August 1997. Since 1996, the FCC periodically reviews these rules and regulations as per their congressional mandate.

FCC regulations define two separate tiers of exposure limits: Occupational or "Controlled environment" and General Public or "Uncontrolled environment". The General Public limits are generally five times more conservative or restrictive than the Occupational limit. These limits apply to accessible areas where workers or the general public may be exposed to Radio Frequency (RF) electromagnetic fields.

Occupational or Controlled limits apply in situations in which persons are exposed as a consequence of their employment and where those persons exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

An area is considered a Controlled environment when access is limited to these aware personnel. Typical criteria are restricted access (i.e. locked or alarmed doors, barriers, etc.) to the areas where antennas are located coupled with proper RF warning signage. A site with Controlled environments is evaluated with Occupational limits.

All other areas are considered Uncontrolled environments. If a site has no access controls or no RF warning signage it is evaluated with General Public limits.

The theoretical modeling of the RF electromagnetic fields has been performed in accordance with OET Bulletin 65. The Maximum Permissible Exposure (MPE) limits utilized in this analysis are outlined in the following diagram:

FCC Limits for Maximum Permissible Exposure (MPE) Plane-wave Equivalent Power Density

Limits for Occupational/Controlled Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f ²)*	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-			5	6
100,000				

Limits for General Population/Uncontrolled Exposure (MPE)

		•					
Frequency	Electric	Magnetic	Power	Averaging Time E ² ,			
Range Field		Field	Density (S)	H ² or S (minutes)			
(MHz)	Strength (E)	Strength	(mW/cm²)				
	(V/m)	(H) (A/m)					
0.3-1.34	614	1.63	(100)*	30			
1.34-30	824/f	2.19/f	(180/f²)*	30			
30-300	27.5	0.073	0.2	30			
300-1500			f/1500	30			
1500-			1.0	30			
100,000							
f = frequ	uency in MHz	*Plane-wave equivalent power density					

OSHA Statement

The General Duty clause of the OSHA Act (Section 5) outlines the occupational safety and health responsibilities of the employer and employee. The General Duty clause in Section 5 states:

(a) Each employer –

- shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees;
- (2) shall comply with occupational safety and health standards promulgated under this Act.
- (b) Each employee shall comply with occupational safety and health standards and all rules, regulations, and orders issued pursuant to this Act which are applicable to his own actions and conduct.

OSHA has defined Radiofrequency and Microwave Radiation safety standards for workers who may enter hazardous RF areas. Regulation Standards 29 CFR § 1910.147 identify a generic Lockout/Tagout procedure aimed to control the unexpected energization or startup of machines when maintenance or service is being performed.

Appendix C – Safety Plan and Procedures

The following items are general safety recommendations that should be administered on a site by site basis as needed by the carrier.

<u>General Maintenance Work</u>: Any maintenance personnel required to work immediately in front of antennas and / or in areas indicated as above 100% of the Occupational MPE limits should coordinate with the wireless operators to disable transmitters during their work activities.

Training and Qualification Verification: All personnel accessing areas indicated as exceeding the General Population MPE limits should have a basic understanding of EME awareness and RF Safety procedures when working around transmitting antennas. Awareness training increases a worker's understanding to potential RF exposure scenarios. Awareness can be achieved in a number of ways (e.g. videos, formal classroom lecture or internet-based courses).

Physical Access Control: Access restrictions to transmitting antennas locations is the primary element in a site safety plan. Examples of access restrictions are as follows:

- Locked door or gate
- Alarmed door
- Locked ladder access
- Restrictive Barrier at antenna (e.g. Chain link with posted RF Sign)

<u>RF Signage</u>: Everyone should obey all posted signs at all times. RF signs play an important role in properly warning a worker prior to entering into a potential RF Exposure area.

Assume all antennas are active: Due to the nature of telecommunications transmissions, an antenna transmits intermittently. Always assume an antenna is transmitting. Never stop in front of an antenna. If you have to pass by an antenna, move through as quickly and safely as possible thereby reducing any exposure to a minimum.

Maintain a 3-foot clearance from all antennas: There is a direct correlation between the strength of an EME field and the distance from the transmitting antenna. The further away from an antenna, the lower the corresponding EME field is.

Site RF Emissions Diagram(s): Section 4 of this report contains RF Diagram(s) that outline various theoretical Maximum Permissible Exposure (MPE) areas at the site. The modeling is a worst-case scenario assuming a duty cycle of 100% for each transmitting antenna at full power. This analysis is based on one of two access control criteria: General Public criteria means the access to the site is uncontrolled and anyone can gain access. Occupational criteria means the access to the antenna locations.

Appendix D – RF Emissions

The RF Emissions Simulation(s) in this report display theoretical spatially averaged percentage of the Maximum Permissible Exposure for all systems at the site unless otherwise noted. These diagrams use modeling as prescribed in OET Bulletin 65 and assumptions detailed in Appendix E.

The key at the bottom of each RF Emissions Simulation indicates percentages displayed referenced to FCC General Public Maximum Permissible Exposure (MPE) limits. Color coding on the diagram is as follows:

-) Areas indicated as Gray are predicted to be below 5% of the MPE limits. Gray represents areas more than 20 times below the most conservative exposure limit. Gray areas are accessible to anyone.
-) Green represents areas are predicted to be between 5% and 100% of the MPE limits. Green areas are accessible to anyone.
-) Blue represents areas predicted to exceed the General Public MPE limits but are less than Occupational limits. Blue areas should be accessible only to RF trained workers.
- J Yellow represents areas predicted to exceed Occupational MPE limits. Yellow areas should be accessible only to RF trained workers able to assess current exposure levels.
-) Red represents areas predicted to have exposure more than 10 times the Occupational MPE limits. **Red indicates that the RF levels must be reduced prior to access.** An RF Safety Plan is required which outlines how to reduce the RF energy in these areas prior to access.

If trained occupational personnel require access to areas that are delineated as above 100% of the limit, Sitesafe recommends that they utilize the proper personal protection equipment (RF monitors), coordinate with the carriers to reduce or shutdown power, or make real-time power density measurements with the appropriate power density meter to determine real-time MPE levels. This will allow the personnel to ensure that their work area is within exposure limits.

Appendix E – Assumptions and Definitions

General Model Assumptions

In this site compliance report, it is assumed that all antennas are operating at **full power at all times**. Software modeling was performed for all transmitting antennas located on the site. Sitesafe has further assumed a 100% duty cycle and maximum radiated power.

The modeling is based on recommendations from the FCC's OET-65 bulletin with the following variances per AT&T guidance. Reflection has not been considered in the modeling, i.e. the reflection factor is 1.0. The near / far field boundary has been set to 1.5 times the aperture height of the antenna and modeling beyond that point is the lesser of the near field cylindrical model and the far field model taking into account the gain of the antenna.

The site has been modeled with these assumptions to show the maximum RF energy density. Areas modeled with exposure greater than 100% of the General Public MPE level may not actually occur but are shown as a prediction that could be realized. Sitesafe believes these areas to be safe for entry by occupationally trained personnel utilizing appropriate personal protective equipment (in most cases, a personal monitor).

Use of Generic Antennas

For the purposes of this report, the use of "Generic" as an antenna model, or "Unknown" for an operator means the information about a carrier, their FCC license and/or antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of equipment, antenna models, and transmit power to model the site. If more specific information can be obtained for the unknown measurement criteria, Sitesafe recommends remodeling of the site utilizing the more complete and accurate data. Information about similar facilities is used when the service is identified and associated with a particular antenna. If no information is available regarding the transmitting service associated with an unidentified antenna, using the antenna manufacturer's published data regarding the antenna's physical characteristics makes more conservative assumptions.

Where the frequency is unknown, Sitesafe uses the closest frequency in the antenna's range that corresponds to the highest Maximum Permissible Exposure (MPE), resulting in a conservative analysis.

Appendix F – Definitions

5% Rule – The rules adopted by the FCC specify that, in general, at multiple transmitter sites actions necessary to bring the area into compliance with the guidelines are the shared responsibility of all licensees whose transmitters produce field strengths or power density levels at the area in question in excess of 5% of the exposure limits. In other words, any wireless operator that contributes 5% or greater of the MPE limit in an area that is identified to be greater than 100% of the MPE limit is responsible for taking corrective actions to bring the site into compliance.

Compliance – The determination of whether a site complies with FCC standards with regards to Human Exposure to Radio Frequency Electromagnetic Fields from transmitting antennas.

Decibel (dB) – A unit for measuring power or strength of a signal.

Duty Cycle – The percent of pulse duration to the pulse period of a periodic pulse train. Also, may be a measure of the temporal transmission characteristic of an intermittently transmitting RF source such as a paging antenna by dividing average transmission duration by the average period for transmission. A duty cycle of 100% corresponds to continuous operation.

Effective (or Equivalent) Isotropic Radiated Power (EIRP) – The product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna.

Effective Radiated Power (ERP) – The product of the power supplied to the antenna and the antenna gain in a given direction relative to a half-wave dipole antenna.

Gain (of an antenna) – The ratio of the maximum power in a given direction to the maximum power in the same direction from an isotropic radiator. Gain is a measure of the relative efficiency of a directional antenna as compared to an omnidirectional antenna.

General Population/Uncontrolled Environment – Defined by the FCC as an area where RF exposure may occur to persons who are **unaware** of the potential for exposure and who have no control over their exposure. General Population is also referenced as General Public.

Generic Antenna – For the purposes of this report, the use of "Generic" as an antenna model means the antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use its industry specific knowledge of antenna models to select a worst-case scenario antenna to model the site.

Isotropic Antenna – An antenna that is completely non-directional. In other words, an antenna that radiates energy equally in all directions.

Maximum Measurement – This measurement represents the single largest measurement recorded when performing a spatial average measurement.

Maximum Permissible Exposure (MPE) – The rms and peak electric and magnetic field strength, their squares, or the plane-wave equivalent power densities associated with these fields to which a person may be exposed without harmful effect and with acceptable safety factor.

Occupational/Controlled Environment – Defined by the FCC as an area where RF exposure may occur to persons who are **aware** of the potential for exposure as a condition of employment or specific activity and can exercise control over their exposure.

OET Bulletin 65 – Technical guideline developed by the FCC's Office of Engineering and Technology to determine the impact of RF exposure on humans. The guideline was published in August 1997.

OSHA (Occupational Safety and Health Administration) – Under the Occupational Safety and Health Act of 1970, employers are responsible for providing a safe and healthy workplace for their employees. OSHA's role is to promote the safety and health of America's working men and women by setting and enforcing standards; providing training, outreach and education; establishing partnerships; and encouraging continual process improvement in workplace safety and health. For more information, visit www.osha.gov.

Radio Frequency Exposure or Electromagnetic Fields – Electromagnetic waves that are propagated from antennas through space.

Spatial Average Measurement – A technique used to average a minimum of ten (10) measurements taken in a ten (10) second interval from zero (0) to six (6) feet. This measurement is intended to model the average energy a 6-foot tall human body will absorb while present in an electromagnetic field of energy.

Transmitter Power Output (TPO) – The radio frequency output power of a transmitter's final radio frequency stage as measured at the output terminal while connected to a load.

Appendix G – References

The following references can be followed for further information about RF Health and Safety.

Site Safe, LLC http://www.sitesafe.com FCC Radio Frequency Safety http://www.fcc.gov/encyclopedia/radio-frequency-safety National Council on Radiation Protection and Measurements (NCRP) http://www.ncrponline.org Institute of Electrical and Electronics Engineers, Inc., (IEEE) http://www.ieee.org American National Standards Institute (ANSI) http://www.ansi.org Environmental Protection Agency (EPA) http://www.epa.gov/radtown/wireless-tech.html National Institutes of Health (NIH) http://www.niehs.nih.gov/health/topics/agents/emf/ Occupational Safety and Health Agency (OSHA) http://www.osha.gov/SLTC/radiofrequencyradiation/ International Commission on Non-Ionizing Radiation Protection (ICNIRP) http://www.icnirp.org World Health Organization (WHO) http://www.who.int/peh-emf/en/ National Cancer Institute http://www.cancer.gov/cancertopics/factsheet/Risk/cellphones American Cancer Society (ACS) http://www.cancer.org/docroot/PED/content/PED 1 3X Cellular Phone Towers.asp?sit earea=PED European Commission Scientific Committee on Emerging and Newly Identified Health Risks http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr o 022.pdf Fairfax County, Virginia Public School Survey http://www.fcps.edu/fts/safety-security/RFEESurvey/ UK Health Protection Agency Advisory Group on Non-Ionizing Radiation http://www.hpa.org.uk/webw/HPAweb&HPAwebStandard/HPAweb C/1317133826368 Norwegian Institute of Public Health http://www.fhi.no/dokumenter/545eea7147.pdf

T&TA

FA#: 10128448

GILL

USID: 100205

COUNTY: MONTGOMERY

STRUCTURE TYPE:

SITE NAME:

EXISTING 151'-0" BUILDING

			STA	Г	
		sr	nartlir	nk	
			Trylo	n	
	DRAW	ING SCALES PR	ARE INTENDED FOR 11"x1: INTED MEDIA ONLY.	7" SIZE	
		c	SUBMITTAL S		
	REV	DATE	DESCRIPTION	BY	
		12/11/19	90% CD	SAR	
	в	12/26/19	90% CD	KSN	
	с	01/14/20	90% CD	GOP	
	D	01/21/20	90% CD	PTN	
	0	02/11/20	90% CD	SAR	
AM	The second secon				
REVISION #		2-12	-2020		
0 0 0	"I CERT OR APF ENGINEE LICENSE	ify that the proved by M R under the Number 27	ESE DOCUMENTS WERE PREI IE AND THAT I AM A DULY E LAWS OF THE STATE OF 7217, EXPIRATION DATE 3/2	PARED BY LICENSED MARYLAND, 26/2020."	
0	$ \geq$	PRI		\equiv	
0		1 1 1 1			
0		US	D: 100205		
0		FA#:	10128448		
0					
0			GILL		
0					
0	97	27 MO	UNT PISGAH R	OAD	
0	SII	_VER S	PRING, MD 20	903	
0		FXIZ	IING BUILDING	J	
0	$ \geq$	011007		\equiv	
0	∥—	SHEEL	DESCRIPTION	·]	
0	1	TI	TIF SHFFT		
0		11		J	
0	\geq		SHEET NO	\equiv	
0					
0			T—1		

INDEX	
IPTION	REVISION #
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
G DIAGRAM	0
G DIAGRAM	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

GENERAL NOTES:

- THE SUBCONTRACTOR SHALL GIVE ALL NOTICES AND REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY, MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS, AND LOCAL AND STATE JURISDICTIONAL CODES BEARING ON THE PERFORMANCE OF THE WORK. THE WORK PERFORMED ON THE PROJECT AND THE MATERIALS INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES.
- 2. THE ARCHITECT/ENGINEER HAVE MADE EVERY EFFORT TO SET FORTH IN THE CONSTRUCTION AND CONTRACT DOCUMENTS THE COMPLETE SCOPE OF WORK. THE SUBCONTRACTOR BIDDING THE JOB IS NEVERTHELESS CAUTIONED THAT MINOR OMISSIONS OR ERRORS IN THE DRAWINGS AND OR SPECIFICATIONS SHALL NOT EXCUSE SAID SUBCONTRACTOR FROM COMPLETING THE PROJECT AND IMPROVEMENTS IN ACCORDANCE WITH THE INTENT OF THESE DOCUMENTS.
- THE SUBCONTRACTOR OR BIDDER SHALL BEAR THE RESPONSIBILITY OF 3. NOTIFYING (IN WRITING) THE AT&T REPRESENTATIVE OF ANY CONFLICTS, ERRORS OR OMISSIONS PRIOR TO THE SUBMISSION OF SUBCONTRACTOR'S PROPOSAL OR PERFORMANCE OF WORK. IN THE EVENT OF DISCREPANCIES, THE SUBCONTRACTOR SHALL PRICE THE MORE COSTLY OR EXTENSIVE WORK, UNLESS DIRECTED IN WRITING OTHERWISE.
- THE SCOPE OF WORK SHALL INCLUDE FURNISHING ALL MATERIALS, EQUIPMENT, LABOR AND ALL OTHER MATERIAL AND LABOR DEEMED NECESSARY TO COMPLETE THE WORK/PROJECT AS DESCRIBED HEREIN.
- THE SUBCONTRACTOR SHALL VISIT THE JOB SITE PRIOR TO THE SUBMISSION OF BIDS OR PERFORMING WORK TO FAMILIARIZE THEMSELVES WITH THE FIELD CONDITIONS AND TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- THE SUBCONTRACTOR SHALL OBTAIN AUTHORIZATION TO PROCEED WITH CONSTRUCTION PRIOR TO STARTING WORK ON ANY ITEM NOT CLEARLY DEFINED BY THE CONSTRUCTION DRAWINGS/CONTRACT DOCUMENTS.
- THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS ACCORDING TO THE MANUFACTURER'S/VENDOR'S SPECIFICATIONS UNLESS INFORMED OTHERWISE OR WHERE LOCAL CODES OR ORDINANCES TAKE PRECEDENCE.
- THE SUBCONTRACTOR SHALL PROVIDE A FULL SET OF CONSTRUCTION DOCUMENTS AT THE SITE, UPDATED WITH THE LATEST REVISIONS AND ADDENDUMS OR CLARIFICATIONS, AVAILABLE FOR THE USE BY ALL PERSONNEL INVOLVED WITH THE PROJECT.
- THE SUBCONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE SUBCONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- 10. THE SUBCONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS WHICH MAY BE REQUIRED FOR THE WORK BY THE ARCHITECT/ENGINEERING, THE STATE, COUNTY OR LOCAL GOVERNMENT AUTHORITY
- 11. THE SUBCONTRACTOR SHALL MAKE NECESSARY PROVISIONS TO PROTECT EXISTING IMPROVEMENTS, EASEMENTS, PAVEMENTS, CURBING, ETC. DURING CONSTRUCTION. UPON COMPLETION OF WORK, THE SUBCONTRACTOR SHALL REPAIR ANY DAMAGE THE MAY HAVE OCCURRED DUE TO CONSTRUCTION ON OR ABOUT THE PROPERTY.
- 12. THE SUBCONTRACTOR SHALL MAINTAIN THE GENERAL WORK AREA AS CLEAN AND HAZARD FREE DURING CONSTRUCTION AND DISPOSE OF ALL DIRT, DEBRIS, RUBBISH AND REMOVE EQUIPMENT NOT SPECIFIED AS REMAINING ON THE PROPERTY. PREMISES SHALL BE LEFT IN CLEAN CONDITION AND FREE FROM PAINT SPOTS, DUST OR SMUDGES OF ANY NATURE.
- 13. THE SUBCONTRACTOR SHALL COMPLY WITH ALL OSHA REQUIREMENTS AS THEY APPLY TO THIS PROJECT.
- 14. THE SUBCONTRACTOR SHALL NOTIFY THE AT&T REPRESENTATIVE (B&T ENGINEERING) WHERE A CONFLICT OCCURS ON ANY OF THE CONTRACT DOCUMENTS. THE SUBCONTRACTOR IS NOT TO ORDER MATERIAL OR CONSTRUCT ANY PORTION OF THE WORK THAT IS IN CONFLICT UNTIL CONFLICT IS RESOLVED BY THE AT&T REPRESENTATIVE (B&T ENGINEERING).
- 15. THE SUBCONTRACTOR SHALL VERIFY ALL DIMENSIONS, ELEVATIONS, PROPERTY LINES, ETC. ON THE JOBS.

32'

(OR) 1/16"=1'-0" (22x34)

	EXISTING AT&T ANTENNAS	- EXISTING AT&T 700 RRH (FLEXI RRH 4T4R B14
	EXISTING MW AND YAGI ANTENNA EXISTING AT&T ANTENNA (OPA-65R-LCUU-H4) TO REMAIN (TYP: OF 1 PER ALPHA & BETA SECTORS, 2 TOTAL)	-EXISTING AT&T 1900 RRH (B25 RRH4X30-4R R
\pm ELEV.= 151 $-0 \pm$ (AGL)	EXISTING SPRINT ANTENNA (TYP.)	-EXISTING AT&T 2100 RRH (B66A RRH4X45-4R I
• ELEV. = 146'-0"± (AGL)		BE REMOVED (TYP. OF 1 PER SECTOR, 3 TOTAL — EXISTING AT&T ANTENNA (742264) TO REMAIN
$\begin{array}{c} \bullet \text{IIP OF (E) AI& TANIENNA} \\ \bullet \text{ELEV.} = 144'-2"\pm (AGL) \\ \bullet \text{IIP OF (E) AI& TANIENNA} \end{array}$		(TYP. OF 1 PER SECTOR, 3 TOTAL)
ELEV. = 144'-0"± (AGL)		OF 3 PER SE
€ OF (E) AT&T ANTENNAS FOR BETA SECTOR FIFV = 143'=0"+ (ACI)	EXISTING AT&T FILTER TO REMAIN (TYP. OF 1-	BE REMOVED
Q OF (E) AT&T ANTENNAS FOR		BE REMOVED
€ OF (E) AT&T ANTENNAS FOR		
ELEV. = 140'-0"± (AGL)		
← TOP OF (E) ROOF ELEV. = 133'-6"± (AGL)		EXISTING AT&1 REMOVED (TYF
		(E) (12) 1–5, (E) (3) RET ((E) (3) RET (
		(E) (15) 1/4 (E) (15) 1/4 (E) (15) 1/4
▲ (E) GRADE		
P ELEV.= 0'-0"		
		<u> </u>
EXISTING TOWER ELEVATION-NO	DRTH	0 8'
	EXISTING AT&T ANTENNA (NNH4-65C-R6) (TYP. OF 1 PER ALPHA & BETA SECTORS, 2 TOTAL)	EXISTING AT&T ANTENNA (742264 (TYP. OF 1 PER SECTOR, 3 TOTA
TOP OF (E) PENTHOUSE	EXISTING SPRINT ANTENNAS EXISTING AT&T ANTENNA (OPA-65R-LCUU-H4) (TYP. OF 1 PER ALPHA & BETA SECTORS, 2 TOTAL)	NEW AT&T WCS RRH (AIRSCALE F (TYP. OF 1 PER ALPHA & BETA
• ELEV.= $151'-0"\pm$ (AGL)	EXISTING SPRINT ANTENNA (TYP.)	NEW AT&T 1900 RRH (AIRSCALE 320W AHFIB) (TYP. OF 1 PER BI
$\Phi = 146'-0'' \pm (AGL)$	ANTENNAS (TYP.)	NEW AT&T DC9 (TYP. OF 1 PER SECTOR, 3 TOTA
$\begin{array}{c} \begin{array}{c} \text{TIP OF (E) AT&T ANTENNA} \\ \hline \\ \text{ELEV.} = 144'-2'' \pm (AGL) \\ \hline \\ \end{array}$		
ELEV. = 144'-0"± (AGL)		NEW AT&T ANTEN
€ OF (E) AT&T ANTENNAS FOR BETA SECTOR		(TYP. OF 2 PER EXISTING AT&T T (TYP. OF 2 PER CONTRACTOR
© OF (E) AT&T ANTENNAS FOR	New At&T 700 RRH (AIRSCALE DUAL RRH 4T4R	
ALPHA SECTOR ELEV. = 142'-0"± (AGL)	NEW AT&T 700 RRH (ARSCALE DUAL RRH 4T4R -	474R B30 100W ON (N) D21 BR
G OF (E) & (N) AT&T	Image: Second	
ELEV. = 140'-0"± (AGL)		B12/14 320W A (TYP. OF 2 PER
	^	(TYP. OF 2 PER
		(E) $(12) 1-5$ (E) (3) RET (
	ה ו בדישת הדה בדרשבדהו הה הה ובהש והדש הרח ההרשבדהו הה הה הה הו ו הם בדרש הה ו - ה	
		(N) (9) PWRT (N) (3) RFFT-
★ (E) GRADE		

(OR) 1/16"=1'-0" (22x34)

NEW AT&T 1900 RRH (AIRSCALE DUAL RRH 4T4R B25/66 320W AHFIB) (TYP. OF 1 PER BETA SECTOR, 1 TOTAL)

-NEW AT&T 700 RRH (AIRSCALE DUAL RRH 4T4R B12/14 320W AHLBA) (TYP. OF 1 PER BETA SECTOR, 1 TOTAL)

		SCALE: 1/4"=1'-0" (11x17)	4	
2'	4'	(OR) 1/2"=1'-0" (22x34)		\subseteq

						PROPOSED ANTENNA SCHEDULE						
SECTOR	ANTENNA POSITION	ANTENNA MAKE/MODEL	RAD CENTER	AZIMUTH	M-TILT	E-TILT	RRH MAKE/MODEL	TMA/FILTER	FEED			
	#1	(E) KATHREIN 742264	142'-0"	0.	0.	2./2.	_	(E) (2) LGP12104	(E) (4) 1- (E) (1) F			
	#2	(E) COMMSCOPE NNH4-65C-R6	142'–0"	0.	0.	5°/2°/2° /2°/5°	(N) (1) AIRSCALE DUAL RRH 4T4R B12/14 320W AHLBA (N) (1) AIRSCALE DUAL RRH 4T4R B25/66 320W AHFIB	_	(N) (3) PWRT TRUI (N) (1) RFFT FIBER			
	#3	-	-	-	-	-	_	-	-			
	#4	(E) CCL OPA-65R-LCUU-H4	142'-0"	0.	0.	5'	(N) (1) AIRSCALE RRH 4T4R B30 100W AHNA	_	SHARED F			
	#1	(E) CCL OPA-65R-LCUU-H4	143'-0"	150	0.	6*	(N) (1) AIRSCALE RRH 4T4R B30 100W AHNA	(E) (1) KFTDR00110030	SHARED F			
BETA	#2	(E) COMMSCOPE NNH4-65C-R6	143'-0"	110	0.	12°/5°/5° /5°/10°	(N) (1) AIRSCALE DUAL RRH 4T4R B12/14 320W AHLBA (N) (1) AIRSCALE DUAL RRH 4T4R B25/66 320W AHFIB	_	(N) (3) PWRT TRUI (N) (1) RFFT FIBER			
	# 3	-	-	_	_	-	-	_	-			
	#4	(E) KATHREIN 742264	143'-0"	110	0.	2./2.	-	(E) (2) LGP12104	(E) (4) 1- (E) (1) F			
	#1	(E) KATHREIN 742264	140'-0"	270'	2*	2./2.	_	(E) (2) LGP12104	(E) (4) 1- (E) (1) F			
GAMMA	#2	(N) CCL BSA-M65R-BUU-H6	140'-0"	260*	0.	6'/6'/6'/6' /4'/4'/4'/4' /4'/4'	(N) (2) AIRSCALE DUAL RRH 4T4R B12/14 320W AHLBA (N) (2) AIRSCALE DUAL RRH 4T4R B25/66 320W AHFIB	_	(N) (3) PWRT TRUI (N) (1) RFFT FIBER			
	# 3	(N) CCL BSA-M65R-BUU-H6	140'-0"	260'	0.	2*/2*	(N) (2) AIRSCALE RRH 4T4R B30 100W AHNA	_	SHARED F			

		AT&T					
			Smartlink				
					Trylo	n	
			DRAW	ING SCALES		7" SIZE	
LINE	FEEDLINE LENGTH						
5/8" COAX			REV	DATE	DESCRIPTION	BY	
ÉT COAX	130'-0"		A	12/11/19	90% CD	SAR	
-606-S DC	130'-0"		в	12/26/19	90% CD	KSN	
-48SM-001			C C	01/14/20	90% CD	GOP	
	_			02/11/20	90% CD	SAR	
	_						
IBER/DC	130'-0"						
IBER/DC	130'-0"						
-606-s DC IKS -48SM-001 RUNK	130'-0"				AND		
= /e"	-				ROMES BOOMAN		
ET COAX	130'—0"			2-	12-2020		
ET COAX	130'-0"						
-606-S DC NKS -48SM-001 IRUNK	130'–0"		"I CERT OR APF ENGINEE LICENSE	ify that the proved by M R under the Number 27	ESE DOCUMENTS WERE PRE IE AND THAT I AM A DULY E LAWS OF THE STATE OF 7217, EXPIRATION DATE 3/2	PARED BY LICENSED MARYLAND, 26/2020."	
IBER/DC	130'-0"			PR	OJECT TITLE		
				US FA#:	ID: 100205 : 10128448		
					GILL		
			97 Sli	27 MO _VER S	UNT PISGAH R PRING, MD 20	OAD 903	
				EXIS	TING BUILDING		
				SHEET	DESCRIPTION		
				ANTE	NNA SCHEDUI	E	
				S	SHEET NO.		
					C-5		
	N.	.i.S. •					

DC12 DETAIL

SIZE AND WEIGHT TABLE

BATTERY CABINET	WIDTH	DEPTH	HEIGHT	WEIGHT
NETXTEND OUTDOOR BATTERY CABINET	36"	37"	72"	980 LBS.

CLEARANCE

CLEARANCE	FRONT	REAR	SIDES
NETXTEND OUTDOOR BATTERY CABINET	36"	6"	2"

SBS-170F Battery Features and Benefits:

- Proven Long Service
- High energy density
- Up to two year shelf life
- · Very low ventilation requirement
- Wide operating temperature range: -40°F (-40°C) to 122°F (50°C)

EnerSys PowerSafe SBS-170F Battery Specifications:

Chemistry:	Sealed Lead Acid
Voltage:	12 volts
Nominal Capacity:	170.0Ah
Terminals:	M6
Dimensions (L \times W \times H):	22.10 × 4.90 × 11.1
Weight (pounds):	115.7

10

2ND SQUID INSTALLED WILL BE ALARMED TO THE LOWEST BAND (OR FIRST INSTALLED) RRH ON BETA SECTOR.

3RD SQUID INSTALLED WILL BE ALARMED TO THE LOWEST BAND (OR FIRST INSTALLED) RRH ON GAMMA SECTOR.

AN RRH WILL NEVER HAVE MORE THAN ONE SQUID ALARMED ON IT. SQUID ALARMS ARE NOT TO BE DAISY CHAINED. 5.

6

2 = LC CONNECTOR

STRIKESORB PROTECTION $\langle 1 \rangle =$ MODULE BY RAYCAP

$\begin{pmatrix} 1 \end{pmatrix}$	RAYCAP	DC9-48-60-24-8C-EV
(E-1)	SCALE: N.T.	S

			P	ANEL	'DI STR	BUTION	PANEL	SCHEI	DULE				
												Square D #QO	
	120/240V, 1 PHASE, 3W											200A MAIN BKR	
	200A BUS												
	MAI	N BREAK	KER	RATIN	IG (A) :	20	00	SYSTE	EM VO	LTA	GE (V) :	240	
Туре	DESCRIPTION	VA	c/nc	BKR	POSN	L1	L2	POSN	BKR	c/nc	VA	DESCRIPTION	Тур
dual	UMTS CABINET	4875	nc	100	1	6892		2	30	С	2017	RECT 4	dua
		4875	nc		3		6892	4		С	2017		
dual	FLEX CABINET	1455	nc	100	5	3472		6	30	С	2017	RECT 5	dua
		1275	nc		7		3292	8		с	2017		
dual	UNLABELED	0	nc	20	9	0		10	30	С	0	RECT 6	dua
		0	nc		11		0	12		С	0		
dual	RECT 1	2017	С	30	13	2017		14	30	с	0	RECT 7	dua
		2017	С		15		2017	16		С	0		
dual	RECT 2	2017	С	30	17	2017		18	30	С	0	RECT 8	dua
		2017	С		19		2017	20		С	0		
dual	RECT 3	2017	С	30	21	2017		22	30	С	0	RECT 9	dua
		2017	С		23		2017	24		С	0		
	BLANK				25	1175		26	30	nc	1175	LUCENT AC	dua
	BLANK				27		0	28				BLANK	
	BLANK				29	0		30				BLANK	
	BLANK				31		0	32				BLANK	
	BLANK				33	0		34				BLANK	
	BLANK				35		0	36				BLANK	
	BLANK				37	0		38				BLANK	
	BLANK				39		0	40				BLANK	
	NOT PRESENT				41	0		42				NOT PRESENT	
		PHAS	ETC	TALS	(VA):	17590	16235						
	С	URRENT	PER	R PHA	SE (A):	168	156	Amper	es/pha	se c	annot ex	ceed main breaker rating	
		PAN	EL 1	TOTAL	(VA):	338	325	Lege	nd: c =	= co	ntinuous	nc = non-continuous	
		PANEL	CAP	ACITY	(kVA):	48.0	CC	ONNECT	ED LO	DAD	(kVA):	33.8	
	PANEL LOADING (1	00% non-	-cont	load)	(kVA):	13.7							
	PANEL LOADING (12)	5% contin	nuou	s load)	(kVA):	25.2							
	PANEL	LOADIN	G (T	OTAL	(kVA):	38.9							
		SPARE	CAP	ACITY	(kVA):	9.1							

												Souare D #QO	
	120/240V, 1 PHASE, 3W												
	MA			DATIN	IC (A) -	া	10	OVOTE	MVO			240	
Trune	DESCRIPTION				DOCH .	1.4	10	DOCN		LIA	SE (V).	DESCRIPTION	Τ
rype	DESCRIPTION	260	c/nc		PUSIV	260	LZ	PUSIN	DNR	c/nc	0	CONVERTER	- iyp
single		300	nc	10	2	000	100	2	20	nc	0	CONVERTER	Sing
single		100	nc	20	5	1005	100	4	20	nc	0	SPARE	dua
dual	ACT	1095	nc	10	5	1095	1005	0		nc	U	DLANIZ	
	DLANIZ	1095	nc		6	0	1095	0				BLANK	
	DLANK	-	-		9	U	0	10				DLAINK	
	BLANK				11	0	U	12				BLANK	
	BLANK	_	-		13	0	0	14				BLANK	
	BLANK	-			15	0	0	16				BLANK	
	NOT PRESENT		-		1/	0		18				NOT PRESENT	
	NOT PRESENT		-		19		0	20				NOT PRESENT	
	NOT PRESENT	_			21	0	-	22				NOT PRESENT	
	NOT PRESENT				23		0	24				NOT PRESENT	
	NOT PRESENT	-			25	0		26				NOT PRESENT	
	NOT PRESENT				27		0	28				NOT PRESENT	
	NOT PRESENT				29	0		30				NOT PRESENT	
	NOT PRESENT				31		0	32				NOT PRESENT	
	NOT PRESENT				33	0		34				NOT PRESENT	
	NOT PRESENT				35		0	36				NOT PRESENT	
	NOT PRESENT				37	0		38				NOT PRESENT	
	NOT PRESENT				39		0	40				NOT PRESENT	
	NOT PRESENT				41	0		42				NOT PRESENT	
		PHAS	ETO	DTALS	(VA):	1455	1275						
	(URRENT	PEF	R PHA	SE (A):	12	11	Amper	es/pha	se c	annot ex	ceed main breaker rating	
		PAN	IEL T	TOTAL	(VA):	27	30	Lege	nd: c :	= cor	ntinuous,	nc = non-continuous	
		PANEL	CAP	ACITY	(kVA):	24.0	CC	DNNEC	red Lo	DAD	(kVA):	2.7	
	PANEL LOADING (100% non-	-cont	t. load) (kVA):	2.7							
	PANEL LOADING (12	5% contir	nuou	s load) (kVA):	0.0							
	PANE	L LOADIN	IG (T	OTAL) (kVA):	2.7							
		SPARE	CAP	ACITY	(kVA):	21.3							
				_									

EXISTING AC MAIN PANEL SCHEDULE SCALE: NTS

					ULE	SCHEE	PANEL'	BUTION	DISTR	ANEL	P			
	Square D #QO													
	200A MAIN BKR												120/240V, 1 PHASE, 3W	
													200A BUS	
	240	1	GE (V) :	LTA	M VO	SYSTE	0	20	IG (A) :	RATIN	KER	BREAK	MAIN	
Ty	DESCRIPTION		VA	c/nc	BKR	POSN	L2	L1	POSN	BKR	c/nc	VA	DESCRIPTION	Type
du	RECT 4		2017	с	30	2		6892	1	100	nc	4875	UMTS CABINET	dual
			2017	С		4	6892		3		nc	4875		
du	RECT 5		2017	С	30	6		3292	5	100	nc	1275	FLEX CABINET	dual
			2017	с		8	3472		7		nc	1455	1	
du	RECT 6		2017	с	30	10		2017	9	20	nc	0	UNLABELED	dual
			2017	С		12	2017		11		nc	0		
du	RECT 7		0	С	30	14		2017	13	30	С	2017	RECT 1	dual
		1	0	с		16	2017		15		С	2017		
du	RECT 8		0	с	30	18		2017	17	30	с	2017	RECT 2	dual
			0	с		20	2017		19		С	2017		
du	RECT 9		0	с	30	22		2017	21	30	С	2017	RECT 3	dual
			0	С		24	2017		23		С	2017		
du	LUCENT AC		1175	nc	30	26		1175	25				BLANK	
sin	BATT CAB GFCI		180	nc	20	28	180		27				BLANK	
sin	BATT CAB HEAT		540	nc	15	30		540	29				BLANK	
	BLANK					32	0		31				BLANK	
	BLANK					34		0	33				BLANK	
	BLANK					36	0		35				BLANK	
	BLANK					38		0	37				BLANK	
	BLANK					40	0		39				BLANK	
	NOT PRESENT					42		0	41				NOT PRESENT	
							18612	19967	(VA):	TALS	ETC	PHAS		
	ceed main breaker rating	xce	annot ex	se c	s/pha	Ampere	180	192	SE (A):	R PHA	PEF	IRRENT	CL	
	nc = non-continuous	s.	ntinuous	= co	nd: c =	Lege	79	385	(VA);	OTAL	EL 1	PAN		
	38.6	3	(kVA):)AD	ED LO	NNECT	CC	48.0	(kVA):	ACITY	CAP	PANEL		
								14.4	(kVA):	load	cont	0% non-	PANEL LOADING (10	
								30.3	(kVA):	s load	uou	% contin	PANEL LOADING (125	
		1						44.6	(kVA):	OTAL	G (T	LOADIN	PANEL	
								3.4	(kVA):	ACITY	CAP	SPARE		
		1						3.4	(KVA):		ĺ	JAP.	SPARE CAP	SPARE UAP

	Square D #QO													
	the second second second second												120/240V, 1 PHASE, 3W	
	240	11	GE (V)	LTA	MVO	SYSTE	0	10	IG (A) :	RATIN	KER	BREA	MAI	
Тур	DESCRIPTION		VA	d/nc	BKR	POSN	L2	L1	POSN	BKR	c/nc	VA	DESCRIPTION	Туре
sing	CONVERTER		0	nc	20	2		360	1	10	nc	360	LIGHTS	single
dua	SPARE	_	0	nc	20	4	180		3	20	nc	180	GFCI	single
			0	nc		6		1095	5	10	nc	1095	AC 1	dual
	BLANK					8	1095		7		nc	1095		
	BLANK					10		0	9				BLANK	
	BLANK					12	0		11				BLANK	
	BLANK					14		0	13				BLANK	
	BLANK					16	0		15				BLANK	
	NOT PRESENT					18		0	17				NOT PRESENT	
	NOT PRESENT					20	0		19				NOT PRESENT	
	NOT PRESENT					22		0	21				NOT PRESENT	
	NOT PRESENT					24	0		23				NOT PRESENT	
	NOT PRESENT					26		0	25				NOT PRESENT	
	NOT PRESENT					28	0		27				NOT PRESENT	
	NOT PRESENT					30		0	29				NOT PRESENT	
	NOT PRESENT					32	0		31				NOT PRESENT	
	NOT PRESENT					34		0	33				NOT PRESENT	
	NOT PRESENT					36	0		35				NOT PRESENT	
	NOT PRESENT					38		0	37				NOT PRESENT	
	NOT PRESENT					40	0		39				NOT PRESENT	
	NOT PRESENT					42		0	41				NOT PRESENT	
							1275	1455	(VA):	TALS	ETC	PHAS		
	ceed main breaker rating	12 11 Amperes/phase cannot exceed main breaker ratin						SE (A):	R PHA	PEF	JRRENT	CL		
	, nc = non-continuous	JS,	ntinuous	= coi	nd:c=	Lege	30	27	(VA):	TOTAL	IEL 1	PAN		
	2.7	2	(kVA):	DAD	ED LC	NNECT	CC	24.0	(kVA):	ACITY	CAP	PANEL		
								2.7	(kVA):	load)	-cont	0% non	PANEL LOADING (10	
								0.0	(kVA):	s load)	nuou	% contin	PANEL LOADING (125	
								2.7	PANEL LOADING (TOTAL) (kVA):					
								213	SPARE CAPACITY (kVA):					

3 E-3 SCALE: NTS

2 E-3 EXISTING AC SUB PANEL SCHEDULE SCALE: NTS

Smartlink

DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY.

	SUBMITTALS									
REV	DATE	DESCRIPTION	BY							
A	12/11/19	90% CD	SAR							
в	12/26/19	90% CD	KSN							
с	01/14/20	90% CD	GOP							
D	01/21/20	90% CD	PTN							
0	02/11/20	90% CD	SAR							
\square										

"I CERTIFY THAT THESE DOCUMENTS WERE PREPARED BY OR APPROVED BY ME AND THAT I AM A DULY LICENSED ENGINEER THOUBER THE LAWS OF THE STATE OF MARYLAND, LICENSE NUMBER 27217, EXPIRATION DATE 3/26/2020."

PROJECT TITLE

USID: 100205 FA#: 10128448

GILL

9727 MOUNT PISGAH ROAD SILVER SPRING, MD 20903

EXISTING BUILDING

SHEET DESCRIPTION

AC PANEL SCHEDULE

SHEET NO.

E-3

NOTES:

1. SWITCH OFF EXISTING DC BREAKERS AFTER RRHs HAVE BEEN DECOMMISSIONED, RELABEL AS "SPARE".

TIER 1 (LOWER) VOLTAGE: -48V MAX. TIER BUS CURRENT: 600A

POSITION	DESCRIPTION	BRKR (A)
1	(E) SPARE	15
2	(E) SPARE	15
3	(E) SPARE	15
4	(E) SPARE	15
5	(E) SPARE	15
6	(E) SPARE	15
7	(E) NOKIA FSM4 BBU	20
8		
9	(E) SPARE	25
10	(E) SPARE	25
11	(E) SPARE	25
12		

POSITION	DESCRIPTION	BRKR (A)
13	(N) B12/14 RRH, SECTOR A	50
14	(N) B12/14 RRH, SECTOR B	50
15	(N) B12/14 RRH, SECTOR C	50
16	(N) B25/66 RRH, SECTOR A	50
17	(N) B25/66 RRH, SECTOR B	50
18	(N) B25/66 RRH, SECTOR C	50
19	(N) B30 RRH, SECTOR A	25
20	(N) B30 RRH, SECTOR B	25
21	(N) B30 RRH, SECTOR C	25
22		
23		
24		

TIER 2 VOLTAGE: -48V

MAX. TIER BUS CURRENT: 600A

REMOVE UNUSED BREAKERS, INSTALL NEW CIRCUIT BREAKERS FOR NEW RRHs AS SHOWN

NOTES:

BELOW.

1.

TIER 3 (OPTIONAL - NOTE: 4) VOLTAGE: -48V MAX. TIER BUS CURRENT: 600A

DESCRIPTION	BRKR (A)	POSITION	
(E) GSM	80A	37	
		38	
		39	
		40	
		41	
		42	
		43	
		44	
		45	
		46	
		47	
		48	

DC BREAKER	ALPHA	AT&T
SIZE	PART [#]	NEQ #
1A/1P	Unavailable	Not Applicable
3A/1P	470-301-10	NEQ 10356
5A/1P	470-302-10	NEQ 10357
10A/1P	470-303-10	NEQ 10358
15A/1P	470-304-10	NEQ 10359
16A/1P	Unavailable	Not Applicable
20A/1P	470-305-10	NEQ 10360
25A/1P	470-306-10	NEQ 10361
30A/1P	470-307-10	NEQ 10362
35A/1P	Unavailable	Not Applicable
40A/1P	470-309-10	NEQ 10364
45A/1P	Unavailable	Not Applicable
50A/1P	470-311-10	NEQ 10366
60A/1P	470-312-10	NEQ 10367
70A/1P	Unavailable	Not Applicable
75A/1P	Unavailable	Not Applicable
80A/1P	470-314-10	NEQ 10369
90A/1P	Unavailable	Not Applicable
100A/1P	470-316-10	NEQ 10371
100A/2P	Unavailable	Not Applicable
125A/2P	Unavailable	Not Applicable
150A/2P	747-148-20-000	NEQ 10373
200A/3P	Unavailable	Not Applicable
225A/3P	Unavailable	Not Applicable
250A/3P	747-221-20-000	NEQ 10377

ARGUS DC CIRCUIT BREAKER PART AND NEQ DATA

DC PANEL SCHEDULE E-4 SCALE: N.T.S

34 35 36

POSITION

25

26 27

28 29

30

31

32

33

NOTES:

- 1. ALL BREAKERS 100A AND LARGER REQUIRE ONE (1) UNUSED POSITION ON EACH SIDE.
- 2. 2-POSITION AND 3-POSITION BREAKERS REQUIRE AN ADAPTOR PLATE ON LOAD TERMINALS.
- 3. INSTALL LARGER BREAKERS ON UPPER TIERS TO FACILITATE CABLE MANAGEMENT.
- 4. THIS DETAIL IS APPLICABLE FOR ALPHA 48/24V DUAL VOLTAGE POWER SYSTEMS 4-TIER MODEL (NEQ. 15239) AND 3-TIER MODEL (NEQ. 15240).
- 5. BREAKERS SHALL BE AM-TYPE, 80V 10KA SCCR, MAXIMUM RATING IS 250A. BREAKERS 1A TO 100A ARE 1-POSN, 110A TO 150A ARE 2-POSN AND 175A TO 250A ARE 3-POSN.
- 6. GMT FUSE RATINGS ARE 0.5A TO 15A.

USID: 100205 FA#: 10128448

GILL

9727 MOUNT PISGAH ROAD SILVER SPRING, MD 20903

EXISTING BUILDING

SHEET DESCRIPTION

DC PANEL SCHEDULE

SHEET NO.

E-4

TIER 4 (UPPER) VOLTAGE: -48V

DESCRIPTION	BRKR (A)

NOTES:

FURNISHED BY OEM/AT&T. INSTALLED BY OEM OR AS SCOPED BY MARKET.

FURNISHED BY GC.

INSTALLED BY GC.

FINAL CONNECTION BY OEM OR AS SCOPED BY MARKET. 5.

DELETED.

DELETED

PART OF CONVERTER WITH 18 BREAKER POSITIONS. BREAKERS SPECIFIED SEPARATELY. BREAKERS TO BE TAGGED AND LOCKED OUT. 8

- 10. SIAD IS FURNISHED AND INSTALLED BY OTHERS AND INCLUDES POWER CONNECTIONS AND FIBER TO THE UNIT OR AS SCOPED BY MARKET. WHEN IN THE GENERAL CONTRACTOR'S SCOPE, INSTALL 10 AWG CHASSIS GROUND, PROVIDE (2) 10A BREAKERS FROM A 24V DC POWER SOURCE OR (2) 5A BREAKERS FROM A 48V DC POWER SOURCE AND CONNECT USING MFR POWER CABLE WITH SPECIAL CONNECTOR. 11. LEC TO FURNISH AND INSTALL NETWORK INTERFACE DEVICE.

12. COIL EXTRA LENGTH OF FIBER CABLE(S) WITHIN FIBER MANAGEMENT TRAY INSTALLED IN LTE FRAME.

13. MAXIMUM LENGTH OF SIZE 12 AWG DC POWER CABLE TO RRH SHALL NOT EXCEED 100 FEET. 14. SINGLE-CONDUCTOR DC POWER CABLES SHALL BE TELCOFLEX® OR KS24194[™], COPPER, UL LISTED RHH NON-HALOGEN, LOW SMOKE WITH BRAIDED COVER, TYPE TC (1/0 AND LARGER). UNLESS OTHERWISE NOTED, STRANDING SHALL BE CLASS B (TYPE III) FOR CABLES SIZES 14, 12 & 10 AWG AND CLASS I (TYPE IV) FOR SIZES 8 AWG AND LARGER. CABLES SHALL BE COLOR CODED RED FOR +24V, BLUE FOR -48V AND GRAY FOR 24V AND 48V RETURN CONDUCTORS. MULTI-CONDUCTOR DC POWER CABLES SHALL BE COPPER, CLASS B STRANDING WITH FLAME RETARDANT PVC JACKET, TYPE TC, UL LISTED FOR 90°C DRY/ 75°C WET INSTALLATION. 15. GROUNDING WIRES SHALL BE COPPER, GREEN THHN/THWN UL LISTED FOR 90'C DRY/75'C WET INSTALLATION.

MINIMUM SIZE IS 6 AWG UNLESS NOTED OTHERWISE.

16. RET CONTROL FROM THE RRH IS AN OPTIONAL METHOD OF CONNECTION. REFER TO RF DATA SHEET FOR APPLICABILITY. 17. DELETED.

18. PROVIDE GROUND WIRES FOR ENHANCED ALARM MODULE (eAM) WHEN EMPLOYED BY MARKET.

19. DELETED.

20. DELETED

21. TMAS MAY BE EITHER SINGLE UNITS (AS SHOWN) OR TWIN UNITS. 22. NOTED EQUIPMENT MAY BE COMMON TO LTE AND UMTS SYSTEMS. REFER TO UMTS SYSTEM DIAGRAM IF

APPLICABLE 23. EXISTING 700MHz BAND BBU IF MODEL 9926 (d2Uv3) MAY BE POWERED FROM A 10A BREAKER.

LTE SYSTEM DIAGRAM, TOWER SITE WITH INDOOR ALU BASEBAND AND RRHs @ GRADE LEVEL

SHEET DESCRIPTION

SYSTEM DIAGRAM

SHEET NO.

E-6

		SITE DATA INPUT WORKSHEET - IN	DOOR SITE PO	WER EST	IMATE	TOOL				
STEP 1: ENTER QUANTITIES OF EQUIPMENT & DC OPERATING VOLTAGE:		NOTE: LOAD VALUES FOR ANY EQ	UIPMENT CAN B	E USER SP	ECIFIED	ON THE POWER CONSUMPTION WORKSHEET -	USER CHA	NGESTO	DEFAU	ILT LOAD VALUES ARE HIGHLIGHTED IN B
	-	RADIO HEADS - Outdoor	VOLTAGE	WATTS	QTY	LTE 40 & Multi-Std EQUIPMENT	VOLTAGE	WATTS	QT	ANCILLARY CELL SITE EQUIPMEN
STEP 2: ENTER DC PLANT TYPE FROM DROP-DOWN MENU:		Erlosson			0	A-LU 9926 LTE BBU (wimax: 3 eCEM-u)	48	0	0	A-LU 7705 SIAD
("GENERIC" +24V or -48V DC PLANT CAN BE SELECTED FOR ANY MANUFACTURER'S DC PLANT)		0 RRUS 01 82, 85 (80W)	48	0	1	Nokia FSM-4	48	898		(FUTURE)
GENERIC - ANY 48VDC PLANT		0 RRUS 01 B12 (50W)	48	0		(FUTURE)			0	A-LU MPR-9500 MW Service Switch - MS
-45V PRMARY DC PLANT SPECFIED		0 RRUS 11 B12 (2x30W)	48	0		(FUTURE)	<u> </u>			A-Lu MPR-9500 MW Outdoor Unit - OD
(DC PLANT CONFIGURATION GAN BE REVIEWED ON DC PLANT WORKSHEET)	비ᄂ	RRUS 11 B2, B4, B5, B12 (2x40W)	48	0		(FUTURE)	<u> </u>			A-Lu MPR-9500 MW MPT-HL (Indoor)
STEP 2A: THIS STEP ONLY SHOWN IF "GENERIC" DO PLANT PLANT TYPE HAS BEEN SELECTED:	⊢	0 RRUS 12 82, 84, 85 (2x50W)	48	0		(FUTURE)				(FUTURE)
SELECT AND CONVENTING CONVENTING ST	⊢	0 RRUS 32 82 (4x40W)	48	0	0	Encision LTE INBREGOT BBU - 1 DUL	48	0	1	CISCO MWR-2941 SIAD
ELECT 24Y CONVENTER CARVELLE (4)		0 RRUS 32 B30 (4125W)	48	0	0	Energy WCOMA ROSED1 - 1 OUW	48	0	11-2	CISCO SIAD ASR-901
STEP 38: THIS STEP ON A SUBSING TYCO DESIGN FOR AN EXAMPLE.	⊢	A RRUS A2 82 84 812	40	0	0	Edicason LTE R855501 BBU - 1DUS	40	0	11	Cisco 15454 MSP (MW Ring Config)
THE STEP ONLY SHOWN IF THE GREAT DE PERIT PERIT THE RAS BEEN SELECTED.		a RRUSE2 829	48	0	0	Ericsson LTE R896601 BBU - 20US	40	0	۱⊢	(FUTURE)
	41 F	0 RRUW 82, 85	48	0	0	Ericsson XMU	48	0		Tru-Position LMU (E911)
STEP 5: DO YOU WANT TO CONFIGURE A STANDARD STAND-ALONE DC CONVERTER SYSTEM? N	11 🖿	0 AR 21 (60W)	48	0	0	Ericsson LTE RBS5216	48	0		DC Free Air (per HVAC unit)
NOTE: IF YOU SELECT "" ANY INTEGRATED DC PLANT CONVERTER OPTIONS WILL BE BYPASSED	11 🖿	0 RRUS 4478 B14	48	0		(FUTURE)			1	GENERIC Ethemet NID
		(FUTURE)				(FUTURE)			0	GENERIC Hydrogen Detector
		A-LU				(FUTURE)			0	GENERIC RET Controller
		0 4x45 B66A	48	0		(FUTURE)			0	GENERIC RXAIT
		e FDD RRH2x40-07L (UHLA) B17	48	0		-			0	GENERIC Smoke Detector
		0 RRH2x40-07L-AT (UHL8) B17	48	0	QTY	UMTS 3G EQUIPMENT	VOLTAGE	WATTS	0	GENERIC TMA System
STEP 4: ENTER INDOOR SITE BUILDING/SHELTER DATA:	비ᄂ	B25 RRH4x30 (UHFA) B25	48	0	0	A-LU MACRO NodeB (3S1C - 40W)	24	0	•	GENERIC Tower Lighting (DC)
(Square footage used for interior AC lighting LOAD ealeulation)		0 B25 RRH2X50 (UHFA) B25	48	0	0	A-LU MACRO Node8 (352C - 40W)	24	0		NG480
SELECT SITE BULDING TYPE & SIZE: OTHER	⊢	0 2X5UW-55U 55	48	0	0	A-LU MACHO Nodes (383C - 40W)	24	0		CISCO 2911
SPECFY TOTAL FLOOR SPACE (SGUARE FEET): 0		0 2X60W-1900 82	48	0	0	ALLI MACRO Nodeb (384C - 40W)	24	0	╢┝─	(POTORE)
	비ト		48	0	0	Ad UNICEO NodeE	24	0	╢┝─	(POTORE)
STEP 5- ENTER SITE MAAC SYSTEM DATA-	۱H		40	0	0	Ad U. 9395 dOLL Distributed NodeB MIL	49	0	╢┝─	(FOTORE)
SPECIFY NOVIDUAL HVAC UNIT SIZE (TONS): 0 SPECIFY QUANTITY: 0	11 H	a RRH4X25 B30	48	0	0	A-LU 9396 dell Distributed NodeB MU	40	0	⊪	(FUTURE)
DOES SITE HAVE ADDITIONAL HVAC (DEFERENT SCELY N		(FUTURE)		-	-	(FUTURE)			1-	C. W. F. WETTING
	⊓⊢	(FUTURE)				(FUTURE)	<u> </u>		ar	Y TX RF AMP (MCPA or SCPA) EQPT
ARE THERE SITE HVAC HEATING UNITS? N		RADIO HEADS - Indoor	VOLTAGE	WATTS	0	Ericsson RBS3206 NodeB 3S1C - 1 CAB	24	0		Andrew (12 module mcpa FRAME)
		Erlosson			0	Ericsson RBS3206 NodeB 3S2C - 1 CAB	24	0	0	Andrew 135 Watt Module
TOTAL SPECFIED SITE HVAC: B.TONS ESTMATED HVAC REQUIREMENT: TWO 4-TON UNITS		RRUS 01 82, 85 (80W)	48	0		NON-OBIF Erlosson 3rd, 4th & 6th Ca	rrier			(FUTURE)
SPECIFIED HVAC NOT SUFFICIENT		0 RRUS 01 B12 (60W)	48	0	0	Ericsson RBS3206 NodeB 3S3C - 2 CAB	24	0	0	Powerwave 12 module mcpa FRAME)
		RRUS 11 B12 (2x30W)	48	0	0	Ericsson RBS3205 NodeB 3S4C - 2 CAB	24	0	0	Powerwave 90 Watt Module
THIS TOOL DOES NOT APPLY TO SITES THAT ARE EQUIPPED WITH FREE STANDING DIRECT AR COOLING		RRUS 11 82, 84, 85, 812 (2x40W)	48	0	0	Ericsson RES3206 NodeB 3S5C - 3 CAB	24	0	0	Powerwave 120 Watt Module
		RRUS 12 B2, B4, B5 (2x50W)	48	0		OBIF Erlosson 3rd, 4th & 5th Carri	er	_	0	Powerwave 180 Watt Module
		0 RRUS 32 82 (4x4DW)	48	0	0	Ericsson RES3206 NodeB 3S3C - 1 CAB	24	0		(FUTURE)
	11	0 RRUS 32 B30 (4x25W)	48	0		(Select RRUS from left section)			•	CCI 125 Watt DAB SCPA Module
STEP 6: ENTER STE STATIONARY GENERATOR DATA:	41 F	0 RRUS 32 B66A	48	0	0	Ericsson RBS3206 NodeB 3S4C - 1 GAB	24	0	•	CCI 125 Watt DAC SCPA Module
DOES SITE HAVE A STATIONARY GENERATOR? N	⊢	0 RRUS A2 82, 84, 812	48	0		(Select RRUS from left section)			-	(FUTURE)
ESTIMATED CAPACITY REQUIRED: 20 KW (NO SITE GENERATOR)	41 🛏	DELIMINE DE	48	0	0	Encision Read/or Nodes 334C - 1 GAB	24	0	(CUS	STOM DO LOADS DEFINED ON POWER CONSUM
STEP 7- ENTER SITE BATTERY CONFIGURATION DATA-	۱H	A AIR 21 (50W)	40	0		Editional RES3205 NodeE 3550 - 2 CAR	24			R14 Firshet RRH
STEP 7. ENTER SHE BATTERY CONTROL STORAGE STOR	11 H	A RRUS 4478 B14	40	0	0	(Select SRUS from left section)	24		11	9412 Heaters
SPECIFY TOTAL QUANTITY OF BATTERY STRINGS: 2		(FUTURE)		· ·	0	Ericsson 3303 MICRO NodeB	24	0		825/66 Dual Band RRH
TOTAL SITE BATTERY CAPACITY (AH): 310		A-LU			0	Ericsson RBS3418 Distributed NodeB MU	48	0		B12/14 Dual Band RRH
NOTE: STANDARD BATTERY CAPACITY HAS BEEN SPECIFIED		3 4x45 B66A	48	2112		(FUTURE)			0	
NOTE: 12 VOLT MONOBLOCK BATTERIES - 4 batteries per -48V String		3 FDD RRH2x40-07L (UHLA) B17	48	888		(FUTURE)			0	
ESTIMATED BATTERY RESERVE TIME: 2.44 HOURS (NO SITE GENSET)		0 RRH2x40-07L-AT (UHLB) B17	48	0					0	
	🗖	8 B25 RRH4x30 (UHFA) B25	48	1632		CUSTOM AC LOADS DEFINED ON POWER CONSUMPTI	ONWORKSH	EET)	0	
SITES WITH STATIONARY GENSETS SHALL BE ENGINEERED WITH A MAX OF 3 SHELVES of 180 AH BATTERIES		B25 RRH2x50 (UHFA) B25	48	0	QTY	USER SPECIFIED AC EQUIPMENT	VOLTAGE	KVA.	0	
(3 strings at -48v or 6 strings at +24v) - ALL OTHER SITES A MINIMUM OF 4 HOURS		0 2X60W-850 85	48	0	0			0	0	
	니뇬	0 2X60W-1900 82	48	0	0		L	0	0	
SITE POWER CALCULATION TOOL - VERSION 4.3 - October 17, 2017 R. BADGERO		0 2X50W-1900A B2	48	0	0		L	0	0	
ANY QUESTIONS PLEASE CONTACT RICK BADGERO (RB6820gATT.COM)		0 RRH2000/0100E (0HLG) 829	48	0	0		—	0	1	
		REH4X25 B30	40	40.40	0		I —	0	11	
		(FUTURE)	~	14.40	0		<u> </u>	0	╢┝╴	TOTAL USER SP
		(FUTURE)			0		 	0	11	TOTAL +24V (27V) A
	15				0			0	11	TOTAL -48V (64V) A
					0			0	1-	
	1					TOTAL USER SPEC	FIED KVA	: 0]	
	1					TOTAL 120VAC AMP8: 0	1			
						TOTAL 240VAC AMPS: 4882				
	1									
	1		-48V PI	RMARY VO	LTAGE	DC PLANT SPECIFIED		ŧ		ESTIMATED SITE MAX, AC LOAD (AI
	1	-24VDC E0	DUPMENT LOAD	. 0	WATTS	= 0 AMP3 at +24V		1		ESTMATE 200A SERVICE SUI
	1	-48VDC E0	PUPMENT LOAD	: 8886	WATTS	= 184 AMP3 at 48V		+		STE SENEDITAD CARACTY DESI
		TOTAL PRI	BECONDART 24	• 0000	WATT			ŧ	<u> </u>	
	1	I TOTAL PRI	AND NOT LOAD		104113	104 AMP 0 01 40V		L L	⊢	INO ON ATTE GENERATION CAPA
		(DC 8	LANT CONFIGUR	ATION CAN	SE RE	VEWED ON DC PLANT WORKSHEET)		Т	<u> </u>	and on one of the other of the
	1	DC PLANT: GE	ENERIC - ANY -4	VDC PLAN	T			t		RECOMMENDED HVAC \$YS
		-48V F	RECTIFIERS REQ	UIRED (N+1): 8			1		SPECIFIED SITE TOTAL HVAC CAPA
	1		-48V RECT	FER SLOT	8: 11	1		1		ESTIMATE EXISTING HVAC NOT
	1	CONV. TYPE: GE	ENERIC - CONV.	ZE & SLOT	TOTYM	ANUALLY SPECIFIED		I		
		-2	4V CONVERTER	REQUIRED	D: 0	(NO DC CONVERTERS REQUIRED)		1		
	1		+24V CONVER	TER SLOT	8: 0	(NO DC CONVERTERS REQUIRED)		1		
	1		E	TIMATED B	BATTER	Y RESERVE TIME		4		
			2 165 AH 48	VSTRINGS	= 2.44	HOURS (4 HOUR MINIMUM BATTERY RES	SERVE)	1		

BRIGHT	TYELLOW	
π	VOLTAGE	WATTS
	48	0
38	48	0
DU	48	0
	48	0
_	48	0
	49	0
	49	0
_	49	0
_	40	
	40	
	40	0
	40	0
	48	0
	48	0
	48	U
	48	U
	48	0
	48	0
	48	0
	48	0
	48	0
т.	VOLTAGE	WATTS
	24	0
	24	0
	24	0
	24	0
	24	0
	24	0
1		
	24	0
	24	0
IPTION I	WORKSHEET)	
Т	VOLTAGE	WATTS
	48	2208
	48	800
	48	0
	48	0
	48	0
	48	0
	48	0
	48	0
	48	0
	40	0
	40	0
	40	0
	48	0
	48	0
	48	0
	48	0
PECFE	D WATTS:	3008
AMPS:	0	
AMPS:	65.7	

AMPS):	97.5	0 AMPS			
UFFICIE	NT				
DURED:	20	KW			
ACITY:	0	KW			
TOR)					
STEM:	TWO	0 4-TON			
ACITY:	0-T	ONS			
SUFFICENT					

Smartlink

DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY.

SUBMITTALS						
REV	DATE	DESCRIPTION	BY			
A	12/11/19	90% CD	SAR			
в	12/26/19	90% CD	KSN			
с	01/14/20	90% CD	GOP			
D	01/21/20	90% CD	PTN			
0	02/11/20	90% CD	SAR			
\square						

"I CERTIFY THAT THESE DOCUMENTS WERE PREPARED BY OR APPROVED BY ME AND THAT I AM A DULY LICENSED ENGINEER THOUBER THE LAWS OF THE STATE OF MARYLAND, LICENSE NUMBER 27217, EXPIRATION DATE 3/26/2020."

PROJECT TITLE

USID: 100205 FA#: 10128448

GILL

9727 MOUNT PISGAH ROAD SILVER SPRING, MD 20903

EXISTING BUILDING

SHEET DESCRIPTION

POWER LOAD CALCULATIONS

SHEET NO.

RF-4

GENERAL NOTES

1. GENERAL REQUIREMENTS

A. PURPOSE AND INTENT

I.THE DRAWING AND SPECIFICATION ARE INTENDED TO BE FULLY EXPLANATORY AND SUPPLEMENTARY, HOWEVER, SHOULD ANYTHING BE SHOWN, INDICATED, OR SPECIFIED ON ONE AND NOT THE OTHER, IT SHALL BE DONE THE SAME AS IF DISCREPANCIES BETWEEN REQUIREMENTS SHOWN IN BOTH. THE MORE STRINGENT REQUIREMENTS SHALL APPLY.

2. THE INTENTION OF THE DOCUMENT IS TO INCLUDE ALL LABOR AND MATERIALS REASONABLY NECESSARY FOR THE PROPER EXECUTION AND COMPLETION OF THE WORK AS STIPULATED IN THE CONTRACT.

A. CONFLICTS

VERIFY ALL MEASUREMENTS AT THE SITE BEFORE ORDERING MATERIAL OR DOING ANY WORK. NO EXTRA CHARGE OR COMPENSATION WILL BE ALLOWED DUE TO DIFFERENCES BETWEEN ACTUAL DIMENSIONS OR DIMENSIONS SHOWN ON PLANS SUBMIT NOTICE OF ANY DISCREPANCY IN DIMENSIONS OR OTHERWISE TO AT&T FOR RESOLUTION BEFORE PROCEEDING WITH THE WORK. 2. NO PLEA OF IGNORANCE OF CONDITIONS THAT EXIST, OR OF

DIFFICULTIES OR CONDITIONS THAT MAY BE ENCOUNTERED, OR OF ANY OTHER RELEVANT MATTER CONCERNING THE EXECUTION OF THE WORK WILL BE ACCEPTED AS AN EXCUSE FOR ANY FAILURE OR OMISSION ON THE PART OF THE CONTRACTOR TO FULFILL EVERY DETAIL OF ALL THE REQUIREMENTS OF THE CONSTRUCTION DOCUMENTS GOVERNING THE

A. CLEANING

KEEP THE SITE FREE FROM ACCUMULATION OF WASTE AND RUBBISH CAUSED BY EMPLOYEES AT THE COMPLETION OF THE WORK, REMOVE ALL WASTE AND NON-CONSTRUCTION MATERIAL INCLUDING ALL CONTRACT TOOLS, SCAFFOLDING, AND SURPLUS MATERIAL AND LEAVE SITE CLEAN AND READY FOR USE

A. CODES

1.CONTRACTOR SHALL BE RESPONSIBLE FOR FOLLOWING ALL LAWS, REGULATIONS, AND RULES PROMULGATED BY FEDERAL STATE AND LOCAL AUTHORITIES WITH JURISDICTION OVER THE SALTIER. THIS RESPONSIBILITY IS IN EFFECT REGARDLESS OF WEATHER THE LAW, ORDINANCE, REGULATION OR RULE IS MENTIONED IN THESE SPECIFICATIONS.

A. LICENSING

1. CONTRACTOR SHALL HAVE AND MAINTAIN A VALID CONTRACTOR'S LICENSE FOR THE LOCATION IN WHICH THE WORK IS TO BE PERFORMED. FOR JURISDICTIONS THAT LICENSE INDIVIDUAL TRADES, THE TRADESMAN OR SUBCONTRACTOR PERFORMING THOSE SHALL BE LICENSED, RESEARCHED AND COMPLY WITH THE LICENSING LAWS, PAY LICENSE FEES, AND SELECT AND INFORM SUBCONTRACTORS REGARDING THESE LAWS.

A. OSHA

1. FOLLOW ALL APPLICABLE RULES AND REGULATIONS OF THE OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATIONS AND STATE LAWS BASED IN THE FEDERAL OCCUPATION SAFETY AND HEALTH ACT. THESE REGULATIONS INCLUDE, BUT ARE NOT LIMITED TO, REGULATIONS DEALING WITH TOWER CONSTRUCTION AND SAFETY, EXCAVATION AND TRENCHING, AND WORK IN CONFINED SPACES. ENSURE THAT EMPLOYEES AND SUBCONTRACTORS WEAR HARD HATS AT ALL TIMES DURING CONSTRUCTION.

A. PHOTOS

1. PROVIDE PHOTOGRAPHIC EVIDENCE OF ALL FOUNDATION INSTALLATIONS, GROUNDING, AND TRENCHING AFTER PLACEMENT OF UTILITIES PRIOR TO BACKFILL.

A. BUILDING PERMITS

1. CONTRACTOR WILL SUBMIT CONSTRUCTION DOCUMENTS TO THE JURISDICTIONAL AUTHORITY FOR PLAN CHECK AND REVIEW. CONTRACTOR WILL SUBMIT LICENSING AND WORKMAN'S COMPENSATION INFORMATION TO THE JURISDICTION AS REQUIRED TO OBTAIN THE BUILDING PERMIT, CONTRACTOR SHALL COORDINATE AND SCHEDULE REQUIRED INSPECTIONS AND POST REQUIRED PERMITS AT THE JOB SITE COMPLY WITH SPECIFIC PROJECT RELATED REQUESTS AND SUGGESTIONS MADE BY BUILDING INSPECTOR, AND INFORM CONSTRUCTION MANAGER OF ANY SUCH WORK THAT MAY BE BEYOND THE SCOPE OF THE CONTRACT OR DEVIATE FROM THE CONSTRUCTION DOCUMENT. AT&T WILL REIMBURSE THE CONTRACTOR FEES FOR PLAN REVIEW, BUILDING PERMIT, CONNECTIONS, AND INSPECTIONS. (INCLUDED IN THE BASE PROPOSAL).

A. ZONING REGULATIONS AND CONDITIONAL USE PERMITS

1. CONTRACTOR WILL SUBMIT ALL ZONING AND CONDITIONAL USE PERMITS. SOME USE PERMITS MAY HAVE SPECIFIC REQUIREMENTS FOR THE SITE RELATED TO CONSTRUCTION, SUCH AS NOISE REGULATIONS, HOURS OF WORK, ACCESS LIMITATIONS, ETC. THE CONSTRUCTION MANAGER WILL INFORM THE CONTRACTOR OF THESE REQUIREMENTS AT THE PRE-BID MEETING OR AS SHOWN IN THE CONSTRUCTION DOCUMENTS.

A. FAA PERMIT AND TOWER LIGHTING

1. REFER TO CONSTRUCTION DOCUMENTS AND CONSTRUCTION MANAGER FOR FAA AND STATE LIGHTING REQUIREMENTS, CONTRACTOR SHALL PROVIDE TEMPORARY FM APPROVED LIGHTING UNTIL PERMANENT LIGHTING IS OPERATIONAL

A. TOWER SECURITY

A. IOWER SECURITY 1. IF REQUIRED, TOWER MUST BE FENCED, TEMPORARILY OR PERMANENTLY WITHIN 24 HOURS OF ERECTION. DO NOT ALLOW THE GATE ACCESSING THE TOWER AREA TO REMAIN OPEN OR UNATTENDED ANY TIME FOR ANY REASON. KEEP THE GATE CLOSED AND LOCKED WHEN NOT IN

L. SITE CONTROL

THE CONTRACTOR IS COMPLETELY RESPONSIBLE FOR CONTAINMENT OF SEDIMENT AND CONTROL OF EROSION AT THE SITE. ANY DAMAGE TO ADJACENT OR DOWNSTREAM PROPERTIES WILL BE CORRECTED BY THE CONTRACTOR AT NO EXPENSE TO AT&T. 2. THE CONTRACTOR IS TO MAINTAIN ADEQUATE DRAINAGE AT ALL

TIMES. DO NOT ALLOW WATER TO STAND OR POND. ANY DAMAGE TO STRUCTURES OR WORK ON THE SITE CAUSED BY INADEQUATE MAINTENANCE OF DRAINAGE PROVISIONS WILL BE THE RESPONSIBILITY OF THE CONTRACTOR AND ANY COST ASSOCIATED WITH REPAIRS FOR SUCH DAMAGE WILL BE AT THE CONTRACTOR'S EXPENSE.

3. ALL WASTE MATERIAL SHALL BE PROPERLY DISPOSED OF OFF-SITE OR AS DIRECTED BY CONSTRUCTION MANAGER AND IN ACCORDANCE WITH JURISDICTIONAL AUTHORITIES.

M. LIVESTOCK PROTECTION

1. PROTECT AND SECURE LIVESTOCK. MAINTAIN AND SECURE EXISTING PERIMETER FENCE AND/OR GATE ENCLOSURES.

2. SITE PREPARATION

A. SCOPE OF WORK INCLUDES 1. PROTECTION OF EXISTING TREES, VEGETATION AND LANDSCAPING MATERIALS WHICH MIGHT BE DAMAGED BY CONSTRUCTION ACTIVITIES. 2. TRIMMING OF EXISTING TREES AND VEGETATION AS REQUIRED FOR PROTECTION DURING CONSTRUCTION ACTIVITIES.

- 3. CLEANING AND GRUBBING OF STUMPS, VEGETATION, DEBRIS, RUBBISH, DESIGNATED TREES AND SITE IMPROVEMENTS.

4. TOPSOIL STRIPPING AND STOCKPILING. 5. TEMPORARY EROSION CONTROL, SILTATION CONTROL, AND DUST TEMPORARY PROTECTION OF ADJACENT PROPERTY, STRUCTURES, BENCHMARKS, AND MONUMENTS.

7. PROTECTION AND TEMPORARY RELOCATION, STORAGE AND RE-INSTALLATION OF EXISTING FENCE AND OTHER SITE IMPROVEMENTS SCHEDULED FOR RE-USE.

8. REMOVAL AND LEGDK DISPOSAL OF CLEARED MATERIALS.

B. PRODUCTS AND MATERIALS (AS APPROVED BY CONSTRUCTION MANAGER OR AS NOTED IN CONSTRUCTION DOCUMENTS)

MATERIALS USED FOR TREE PROTECTION, EROSION CONTROL, SILTATION CONTROL, AND DUST CONTROL.

3. EARTHWORK

A. SCOPE OF WORK INCLUDES 1. EXCAVATION, TRENCHING, FILLING, COMPACTION, AND GRADING FOR STRUCTURES, SITE IMPROVEMENTS AND UTILITIES. 2. MATERIALS FOR SUB-BASE, DRAINAGE, BACKFILL AND GRAVEL FOR

SLABS, PAVEMENT AND IMPROVEMENTS.

 ROCK EXCAVATION WITHOUT BLASTING.
 SUPPLY OF ADDITIONAL MATERIALS FOR OFFSITE AS REQUIRED. REMOVAL AND LEGDK DISPOSAL OF EXCAVATED MATERIAL AS REQUIRED.

B. QUALITY ASSURANCE 1. COMPACTION

WALKWAYS WILL OBTAIN A 95% COMPACTION AT A MINIMUM DRY DENSITY AS DETERMINED BY ASTM 0-1557 OR WITH PLUS OR MINUS 3% OF THE MOISTURE CONTENT

2. GRADING TOLERANCES OUTSIDE BUILDING LINES LAWNS, UNPAVED AREAS AND WALKS PLUS OR MINUS 1

INCH

B. UNDER PAVEMENTS PLUS OR MINUS 1/2 INCH. 3. GRADING TOLERANCES FOR FILL UNDER CONCRETE APPLICATIONS A. PLUS OR MINUS 1 INCH MEASURED WITH 10 FOOT STRAIGHT EDGE

C. PRODUCTS AND MATERIALS (AS APPROVED BY CONSTRUCTION MANAGER OR AS NOTED IN CONSTRUCTION DOCUMENTS)

1. SUB-BASE MATERIAL: GRADED MIXTURE OF NATURAL OR CRUSHED GRAVEL, CRUSHED STONE OR SLAG, AND NATURAL SAND. 2. WASHED MATERIAL, EVENLY GRADED MIXTURE OF CRUSHED STONE OR GRAVEL WITH 95% PASSING A 1-1/2 INCH SIEVE. 3. GRADING MATERIAL WILL CONSIST OF SATISFACTORY NATIVE OR IMPORTED SOIL MATERIALS FREE OF CLAY, ROCK OR GRAVEL NOT LARGER THAN 2 INCHES IN ANY DIMENSION, DEBRIS, WASTE, FROZEN MATERIALS AND OTHER UNSUITABLE MATERIALS WILL NOT BE ALLOWED FOR USE. IMPORTED MATERIALS SHALL HAVE A CLAY CONTENT OF NO MORE THAN 5%.

4. GRAVEL MATERIAL: EVENLY GRADED MIXTURE OF CRUSHED STONE OR GRAVEL WITH 95% PASSING A 1-1/2 INCH SIEVE. 5. GEOTEXTILE FABRIC: AS PER CONSTRUCTION DOCUMENTS.

D. CLEARING AND GRUBBING

1. REMOVE ALL VEGETATION AND MATERIALS AS REQUIRED. REMOVE STUMPS COMPLETELY UNDER FOUNDATIONS AND ROADWAYS. DISPOSE OF CLEARING AND GRUBBING OFF-SITE OR IN AN ON-SITE LOCATION APPROVED BY CONSTRUCTION MANAGER.

E. STRIPPING

STRIP NOT LESS 3 INCHES OF SOD AND TOPSOIL FROM AREAS THAT WILL UNDERLAY GRAVEL, PAVEMENT, NEW STRUCTURES OR EMBANKMENTS. STOCKPILE STRIPPING ON-SITE FOR RE-USE AND FINAL LANDSCAPING.

G. EMBANKMENT

CONSTRUCT EMBANKMENT TO THE LINES AND GRADES SHOWN ON THE DRAWING 2. CONSTRUCT EMBANKMENT FROM ON-SITE EXCAVATION MATERIAL WHEN

SUITABLE. USE IMPORTED BACKFILL ONLY AFTER AVAILABLE ON-SITE EXCAVATION MATERIAL HAS BEEN USED.

3. CONSTRUCT IN LIFTS OF NOT MORE THAN 12 INCHES IN LOOSE DEPTH. THE FULL WIDTH OF THE CROSS SECTION SHALL BE BROUGHT UP UNIFORMLY.

4. MATERIAL SHALL BE PLACED IN LAYERS AND SHALL BE NEAR OPTIMUM MOISTURE CONTENT BEFORE ROLLING TO OBTAIN THE PRESCRIBED COMPACTION. WETTING OR DRYING OF THE MATERIAL AND MANIPULATION TO SECURE A UNIFORM MOISTURE CONTENT THROUGHOUT THE LAYERS MAY BE REQUIRED. SUCH OPERATIONS SHALL BE INCLUDED IN THE APPROPRIATE BID ITEM. SHOULD THE MATERIAL BE TOO WET TO PERMIT PROPER COMPACTION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO UTILIZE MATERIAL WITH AN ACCEPTABLE MOISTURE CONTENT. DO NOT PLACE FROZEN MATERIAL IN THE EMBANKMENT AND DO NOT

PLACE EMBANKMENT MATERIAL UPON FROZEN MATERIAL 6. CONTRACTOR SHALL BE RESPONSIBLE FOR THE STABILITY OF EMBANKMENTS AND THE REPLACEMENT OF ANY PORTION WHICH HAS BECOME DISPLACED DUE TO CONTRACTOR'S OPERATIONS.

7. START LAYERS IN THE DEEPEST PORTION OF THE FILL AND AS PLACEMENT PROGRESSES, CONSTRUCT LAYERS APPROXIMATELY PARALLEL TO THE FINISH GRADE LINE

6. ROUTE EQUIPMENT BOTH LOADED AND EMPTY, OVER THE FULL WIDTH OF THE EMBANKMENT TO ENSURE UNIFORMITY OF MATERIAL PLACEMENT. 9. COMPACT EMBANKMENT UNDERLYING NEW GRAVEL PAVING, FLOOR SLABS AND STRUCTURES TO BE 95% COMPACTION AT A MINIMUM DRY DENSITY AS DETERMINED BY ASTM 0-1557 OR WITHIN PLUS OR MINUS 3% OF OPTIMUM MOISTURE CONTENT. COMPACT NON-STRUCTURAL AREA EMBANKMENTS TO A MINIMUM OF 90% OF ASTM 0-1557.

H. SITE GRADING

1. USING ON-SITE EXCAVATION MATERIAL, SHAPE, TRIM, FINISH AND COMPACT SURFACE AREAS TO CONFORM TO THE LINES. GRADES AND CROSS SECTIONS SHOWN ON THE DRAWING OR AS DESIGNATED BY THE CONSTRUCTION MANAGER.

2. GRADE SURFACES TO DRAIN AND ELIMINATE ANY PONDING OR FROSION

3. ELIMINATE WHEEL RUTS BY REGRADING.

4. COMPACT AREAS OF UNDERLYING NEW GRAVEL, PAVING, FLOOR SLABS AND STRUCTURES TO BE AT 95% COMPACTION AT A MAXIMUM DRY DENSITY AS DETERMINED BY THE ASTM 0-1557 OR WITHIN PLUS OR MINUS 3% OF OPTIMUM MOISTURE CONTENT.

5. CONSTRUCT FINISH SURFACE OF SITE GRADING AREAS WITHIN 1 INCH FROM SPECIFIED GRADE.

SUBGRADE PREPARATION

1. SHAPE TOP OF SUBGRADE TO THE LINES AND GRADES SHOWN ON THE DRAWINGS

2. MAINTAIN TOP OF SUBGRADE IN A FREE-DRAINING CONDITION. 3. DO NOT STOCK PILE MATERIAL ON TOP OF SUBGRADE UNLESS AUTHORIZED BY CONSTRUCTION MANAGER.

4. COMPACT THE TOP 12 INCHES OF SUBGRADE TO A 95% COMPACTION AT A MAXIMUM DRY DENSITY AS DETERMINED BY ASTM 0-1557 OR WITHIN PLUS OR MINUS 3% OF THE OPTIMUM MOISTURE CONTENT. 5. CONSTRUCT TOP OF SUBGRADE WITHIN 1 INCH OF ESTABLISHED GRADE AND CROSS SECTION.

J. GEOTEXTILE FABRIC

1. LAY GEOTEXTILE FABRIC OVER COMPACTED SUBGRADE IN THE COMPOUND AREA AND UNDER LENGTH OF ROAD (WHEN REQUIRED). LAP ALL JOINTS TO A MINIMUM OF 36 INCHES.

K. GRAVEL SURFACING

1. CONSTRUCT GRAVEL SURFACING AREAS USING CRUSHED AGGREGATE BASE AND FINISH COURSES AS SPECIFIED BY CONSTRUCTION MANAGER. SPREAD GRAVEL AND RAKE TO OBTAIN A UNIFORM SURFACE AREA.

I LANDSCAPING

1. FURNISH, INSTALL AND MAINTAIN LANDSCAPE WORK AS SHOWN AND/OR REQUIRED WITHIN THE CONSTRUCTION DOCUMENTS OR AS SPECIFIED IN THE CONSTRUCTION SPECIFICATIONS.

M. CONCRETE FORM WORK

1. FORMS: SMOOTH AND FREE OF SURFACE IRREGULARITIES. UTILIZE FORM RELEASE AGENTS. 2. CHAMFER EXPOSED EDGES OF ALL TOWER FOUNDATION SHALL

RECEIVE A ⅔ INCH BY ⅔ INCH 45 DEGREE CHAMFER. OTHER EXPOSED EDGES SHALL RECEIVE A TOOLED RADIUS FINISH.

UPON COMPLETION, REMOVE ALL FORMS INCLUDING THOSE CONCEALED OR BURIED.

4. REFER TO STRUCTURAL DRAWINGS FOR ADDITIONAL REQUIREMENTS.

4. GENERAL NOTES

- PROGRESSION IS NOT INTERRUPTED.
- 2. THE CONTRACTOR IS RESPONSIBLE FOR MAINTAINING A NEAT AND
- MOOTH EVEN-TEXTURED SURFACE. SUCH PIPELINES, SUBSURFACE STRUCTURES AND/OR UTILITIES IN LOCATOR COMPANY.
- THE OWNER'S REPRESENTATIVE
- 6. THE CONTRACTOR SHALL RESTORE ALL DAMAGED, PUBLIC OR PRIVATE PROPERTY TO AT LEAST AS GOOD OF CONDITION AS REPRESENTATIVE.
- BE REPLACED.
- SHORING SHALL BE DONE IN ACCORDANCE WITH OSHA REGULATIONS FOR CONSTRUCTION.
- SHALL BE COORDINATED WITH THE OWNER OR OWNER'S REPRESENTATIVE BEFORE EACH AND EVERY CONNECTION TO EXISTING SYSTEMS IS MADE. 12MAINTAIN FLOW FOR ALL EXISTING UTILITIES
- 13ALL SITE FILL SHALL MEET SELECTED FILL STANDARDS AS DEFINED

INSTALLATION OF UTILITIES.

UNLESS OTHERWISE NOTED.

AND THE TOWER.

DEVELOPMENT

1. IT IS THE CONTRACTOR'S RESPONSIBILITY TO EXAMINE ALL PLAN SHEETS AND SPECIFICATIONS AND COORDINATE HIS WORK WITH THE WORK OF ALL OTHER CONTRACTORS TO ENSURE THAT WORK

ORDERLY SITE, YARD AND GROUNDS. CONTRACTOR SHALL REMOVE AND DISPOSE OFF SITE ALL RUBBISH, WASTE MATERIAL, LITTER AND ALL FOREIGN SUBSTANCES. REMOVE PETROCHEMICAL SPILLS, STAINS AND OTHER FOREIGN DEPOSITS. RAKE GROUND TO A

3. THE PLANS SHOW SOME KNOWN SUBSURFACE STRUCTURE ABOVE GROUND STRUCTURES AND/OR UTILITIES BELIEVED TO EXIST IN THE WORKING AREA, EXACT LOCATION OF WHICH MAY VARY FROM THE LOCATION INDICATED. IN PARTICULAR THE CONTRACTOR IS WARNED THAT THE EXACT OR EVEN APPROXIMATE LOCATION OF

THE AREA MAY BE SHOWN OR MAY NOT BE SHOWN AND IT SHALL BE HIS RESPONSIBILITY TO PROCEED WITH GREAT CARE IN 48 HOURS BEFORE YOU DIG, DRILL OR BLAST CALL LOCAL UTILITIES

4. THE OWNER OR OWNER'S REPRESENTATIVE SHALL BE NOTIFIED IN WRITING OF ANY CONDITIONS THAT VARY FROM THOSE SHOWN ON THE PLANS. THE CONTRACTOR'S WORK SHALL NOT VARY FROM THE PLANS WITHOUT THE EXPRESSED APPROVAL OF THE OWNER OR

5. THE CONTRACTOR IS INSTRUCTED TO COOPERATE WITH ANY AND ALL OTHER CONTRACTORS PERFORMING WORK ON THE SITE DURING THE PERFORMANCE OF THIS CONTRACT.

BEFORE DISTURBED AS DETERMINED BY THE OWNER OR OWNER'S

7. THE CONTRACTOR SHALL COMPLY WITH ALL REQUIRED PERMITS. 8. THE CONTRACTOR SHALL PROTECT EXISTING PROPERTY LINE MONUMENTATION. ANY MONUMENTATION DISTURBED OR DESTROYED, AS JUDGED BY THE OWNER OR OWNER'S REPRESENTATIVE, SHALL

9 ALL TRENCH EXCAVATION AND ANY REQUIRED SHEETING AND

10.CONTRACTOR SHALL BE RESPONSIBLE FOR DEWATERING AND THE MAINTENANCE OF SURFACE DRAINAGE DURING THE COURSE OF

11ALL UTILITY WORK INVOLVING CONNECTIONS TO EXISTING SYSTEMS

BY THE OWNER OF OWNER'S REPRESENTATIVE ON THE DRAWINGS OR GEOTECHNICAL REPORT RECOMMENDATIONS

14CONTRACTOR TO GRADE ALL AREAS OF THE SITE TO PROVIDE POSITIVE DRAINAGE AWAY FROM THE BUILDING OR EQUIPMENT PAD

AND THE LOWER. ISIF NECESSARY, THE CONTRACTOR IS RESPONSIBLE FOR REPAIRING AND REGRADING ROADWAY AND ANY DISTURBED AREAS FOLLOWING

16NO COMMERCIAL MESSAGES TO BE DISPLAYED ON TOWER 17WATER AND SEWER SERVICES ARE NOT REQUIRED FOR THE

18THE CONTRACTOR SHALL FURNISH AND INSTALL ALL MATERIAL

19ELECTRICAL DRAWINGS HAVE BEEN REVIEWED AND SEALED FOR STRUCTURAL PURPOSES ONLY.

AT&T

DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY.

	SUBMITTALS					
REV	DATE	DATE DESCRIPTION B				
A	12/11/19	90% CD	SAR			
в	12/26/19	90% CD	KSN			
с	01/14/20	90% CD	GOP			
D	01/21/20	90% CD	PTN			
0	02/11/20	90% CD	SAR			

2 - 12 - 2020

"I CERTIFY THAT THESE DOCUMENTS WERE PREPARED BY OR APPROVED BY ME AND THAT I AM A DULY LICENSED ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND NUMBER 27217, EXPIRATION DATE 3/26/2020. ICENSE

PROJECT TITLE

USID: 100205 FA#: 10128448

GILL

9727 MOUNT PISGAH ROAD SILVER SPRING, MD 20903

EXISTING BUILDING

SHEET DESCRIPTION

GENERAL NOTES

SHEET NO.

GN-1

App No:	2020031117	Revised 3.20.20 - JR
		Application General Infomation
Applicant Name	Smartlink LLC	Updated 3/10/2020
Application Type	Minor Modification	Ann. Plan? Yes
Carrier	AT&T Wireless	Will site be used to support
Solution Type	Macro	telecommunications facilities
Existing	Existing	government use?
Application Descri	ntion	Gvt. Use Desc.
	Site Infor	mation
Site Id	53.01	Zoning R-H
Structure Type	Building	Latitude 39.016778
Address	9727 Mt. Pisgah Rd, Silver Spr	ring Longitude -76.974517
County Site Name	Chateau Apartments	Ground Elevation 326
Carrier Site Name	Gill	City Silver Spring
Site Owner	Hillzo LP	Lease Status Leased
Structure Owner	Hillzo LP	Does the structure require an antenna structure registration under ECC Title 47
Existing Structure F Provide the propo of the replacemen	leight 133'6" sed height t structure	Distance to Residential Property (New, Replacement, Colocation Only)
without any anten Replacement Apps	na (New, 5 Only)	Distance to Commercial Property
Justification of why	this site was selected:	(New, Replacement, colocation only)
, NearbySites (New,	Replacement Apps Only):	

App No:

2020031117

Screening considerations(New, Colocations, Replacement Apps Only):

App No:

2020031117

6409 Questions Does this qu	alify as a 6409 application? (Minor Mod, Colocations Only) No
For towers outside the public ROW will the proposed installation increase the height of the structure by: (1) more than 10% or (2) more than 20 feet, whichever is greater?	Will the proposed installation increase the width by adding appurtenance to the body of the structure that would protrude from the edge of the structure by more than 6 feet?
For towers outside the public ROW will the proposed installation increase the width by adding appurtenance to the body of the structure that would protrude from the edge of the structure by more than 20 feet? Will the proposed installation increase the height of the structure by: (1) more than 10% or (2) more than 10 feet, whichever is greater?	More than four Equipment Cabinets? YN Will the proposed installation require excavation or expansion outside the current boundaries of the site? Does the structure or current installation have concealment elements/measures? If yes, describe how the proposed installation does not defeat the existing concealment.
	Small Wireless Facility Information
Small Wireless Facility Questions	Small Wireless Facility? No
Is the structure 10% taller than adjacent stru Please list adjacent structure heights Tribal Lands? No	ctures? Cumulative volume of the proposed wireless equipment(s) 240.69 exclusive of antennas in cubic feet Cumulative volume of the proposed antenna antenna(s) exclusive of equipment
	ROW Information
PROW? No	Pole Number
ROW owner	
ROW width	

Арр No:	2020031117	
		Antenna Infomation
Antenna Compli	iance Yes	
Compliance Des	C	
Antenna Locatio	on Yes	
Antenna Loc. De	esc.	
Env. Assessmen	t	
Cat. Excluded? Routine Env. Eva	aluation yes	
Antenna Model	CCL BSA-M65R-BUU-H6	
requency 704-	110, 134-140, 110-116, 14	0-740, 710-722, 824-835, 869-880, 845-846.5, 890-891.5, 1870-1885, 1950-1965,

1046 Antenna Dimensions 72(h)x28.5(w).9.7(d)

RAD Center

140 Max ERP

2

Quantity

Moffet Rd

Braddock

Cottrell Terrace

Neely Rd

Oakview Dr

Capital

۲

۲

R

Home Comfort Air Services

===

Mt Pisgah Rd

Hampshire Green Ln

Avery Park

Avery real Apartment Homes Greenwich

Moffet Rd NewHampshire Ave CASH FOR JUNK CARS DMV

650

650

650

Map

Hampshire Greeng Göögle ě Imagery ©2020 Commonwealth of Virginia, Maxar Technologies, Sanborn, U.S. Geological Survey, USDA Farm Service Agency, Map data ©2020 **United States** Send feedback

Terms

200 ft

CCI - BSA-M65R-BUU-H6

V FREQUENCY BAND	Elevation	< -18	< -18	< -18	< -18	< -18	< -18
	Sidelobes (1st	JD					
604-806 MHz	Upper)	ав	aв	aв	dВ	aв	aв
_	Front-to-Back	> 30 dB	> 30 dB	> 30 dB	> 30 dB	> 30 dB	> 30 dB
698-798 MHz	Ratio @180°	- 00 00	- 00 GD	2 00 QD	2 00 QD	2 00 QD	> 00 UD
	Front-to-Back	> 27 dB	> 30 dB	> 30 dB	> 30 dB	> 30 dB	> 28 dB
698-896 MHz	Ratio over <u>+</u> 20°						
□ 698-960 MHz	Cross-Polar						
	Port-to-Port	> 25 dB	> 25 dB	> 25 dB	> 25 dB	> 25 dB	> 25 dB
790-960 MHz	Isolation						
	Voltage						
824-896 MHz	Standing Wave	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1
	Ratio(VSWR)						
1710-1880 MHz	Passive	≤ - 150	\leq -150	\leq -150	\leq -150	\leq -150	≤ - 150
	Intermodulation	dBc	dBc	dBc	dBc	dBc	dBc
1692-2180 MHZ	(2×20W)		0.50	0.00	0.00	0.00	
1695-2360 MHz	Input Power	500	500	300	300	300	300
	Continuous	watts	watts	watts	watts	watts	watts
1695-2690 MHz	Wave (CW)						
-	Polarization	Dual	Dual	Dual	Dual	Dual	Dual
1850-1995 MHz		Linear	Linear	Linear	Linear	Linear	Linear
2300-2400 MHz		45°	45°	45°	45°	45°	45°
2300-2690 MHz	Input	50	50	50	50	50	50
	Impedance	ohms	ohms	ohms	ohms	ohms	ohms
2496-2690 MHz	Lightning	DC	DC	DC	DC	DC	DC
	Protection		DC	DC	DC	DC	DC
		Ground	Ground	Ground	Ground	Ground	Ground

✓ Mechanical

Dimensions (L×W×D)	72.0×28.5×9.7 in (1828×723×245 mm)
Survival Wind Speed	> 150 mph (> 240 kph)
Front Wind Load	438 lbs (1947 N) @ 100 mph (161 kph)
Side Wind Load	175 lbs (778 N) @ 100 mph (161 kph)
Equivalent Flat Plate	$171 \text{ ft}^2 (1.6 \text{ m}^2)$
Area	
Weight *	101.0 lbs (45.9 kg)
RET System Weight	6.6 lbs (3.0 kg)
Connector	12 \times 7-16 DIN female long neck
Mounting Pole	2 to 5 in (5 to 12 cm)

* Weight excludes mounting and RET

RET Connection Diagram

Connector Spacing

✓ HEIGHT 2 ft. (458 - 761 mm) 3 ft. (762 - 1066 mm)

- 4 ft. (1067 1371 mm)
- 5 ft. (1372 1676 mm)
- 6 ft. (1677 1981 mm)
- 7 ft. (1982 2286 mm)
- 8 ft. (2287 2590 mm)
- 9 ft. (2591 2896 mm)

V HORIZONTAL BEAMWIDTH

TBD

✤ Typical Antenna Patterns

For detailed information on additional support@cciproducts.com

761 MHz Azimuth Elevation 7

1910 MHz Azimuth Elevation

Tweet Kenail

EXTENDING WIRELESS PERFORMANCE

CCI HOME CONTACT US CAREER OPPORTUNITIES ABOUT US CORPORATE GOVERNANCE PRIVACY POLICY CONFLICT MINERAL

POLICY

NEWS

NEWSROOM PRODUCT ANNOUNCMENTS

SUPPORT

TECHNICAL SUPPORT CUSTOMER SERVICES

Communication Components Inc.

89 Leuning Street South Hackensack, NJ 07606 +1 (201) 342-3338 +1 (201) 342-3339 fax sales@cciproducts.com

Copyright © 2020. CCI.

8618 Westwood Center Drive, Suite 315, Vienna, VA 22182 703.276.1100 • 703.276.1169 fax info@sitesafe.com • www.sitesafe.com

SITESAFE

Smartlink on behalf of AT&T Mobility, LLC Site FA – 10128448 Site ID – MDL03821 USID – 100205 Site Name – GILL (MRWSH034472)

9727 Mount Pisgah Road Silver Spring, MD 20903

Latitude: N39-01-00.00 Longitude: W76-58-30.00 Structure Type: Rooftop

R

Report generated date: March 17, 2020 Report by: Leo Romero Customer Contact: Lauren Kersey

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

Sitesafe logo is a registered trademark of Site Safe, LLC. All rights reserved.

Table of Contents

1	GENERAL SITE SUMMARY	3
	 1.1 Report Summary 1.2 Fall Arrest Anchor Point Summary 1.3 Signage Summary 	3 3 4
2	SCALE MAPS OF SITE	5
3	ANTENNA INVENTORY	7
4	EMISSION PREDICTIONS	. 10
5	SITE COMPLIANCE	. 14
	 5.1 SITE COMPLIANCE STATEMENT 5.2 ACTIONS FOR SITE COMPLIANCE 	14 14
6	REVIEWER CERTIFICATION	. 16
A	PPENDIX A – STATEMENT OF LIMITING CONDITIONS	. 17
A	PPENDIX B – REGULATORY BACKGROUND INFORMATION	. 18
	FCC Rules and Regulations	18 19
A	PPENDIX C – SAFETY PLAN AND PROCEDURES	. 20
A	PPENDIX D – RF EMISSIONS	. 21
A	PPENDIX E – ASSUMPTIONS AND DEFINITIONS	. 22
	General Model Assumptions Use of Generic Antennas	22 22
A	PPENDIX F – DEFINITIONS	. 23
A	PPENDIX G – REFERENCES	. 25

1 General Site Summary

1.1 Report Summary

AT&T Mobility, LLC	Summary
Max Cumulative Simulated RFE Level on the	11,435.0% General Public Limit 1" in front of AT&T
Ground	Mobility, LLC's Gamma Sector Antenna #8
Max Cumulative Simulated RFE Level on the	11,435.0% General Public Limit 1" in front of AT&T
Rooftop Walking Surface	Mobility, LLC's Gamma Sector Antenna #8
Max Cumulative Simulated RFE Level on the	<1% General Public Limit
Ground	
Compliant per FCC Rules and Regulations?	Will Be Compliant
Compliant per AT&T Mobility, LLC's Policy?	No

The following documents were provided by the client and were utilized to create this report:

RFDS: WASHINGTON-D.C.-MARYLAND_WASHINGTON-DC-BALTIMORE_GILL_2020-Cell-Site-RF-Modifications_Split-Sector_006650_2251A0S58F_10128448_100205_10-08-2019_Final-Approved_v1.00

CD's: 10128448.AE201.REV C.GILL.100205.01142020

RF Powers Used: MAX RRH Powers

1.2 Fall Arrest Anchor Point Summary

Fall Arrest Anchor & Parapet Info	Parapet Available (Y/N)	Parapet Height (inches)	Fall Arrest Anchor Available (Y/N)
Roof Safety Info	Ν	0	Ν

1.3 Signage Summary

1 AT&T Ŷ 1 1 Signage Locations Warning Information 1 Information 2 Notice Notice 2 Caution Caution 2 Warning 2 Barriers Access 2 Point(s) Alpha Beta Gamma

a. Pre-Site Visit AT&T Signage (Existing Signage)

Note: All existing signage was documented during a previous site visit on 6/27/2017.

	b. Hoposed F	alar signuge							
AT&T Signage Locations			Notice	Hosce	CAUTION	CAUTION			$\sum_{i=1}^{N}$
	Information 1	Information 2	Notice	Notice 2	Caution	Caution 2	Warning	Warning 2	Barriers
Access									
Point(s)									
Alpha						4			Х
Beta						9			X
Gamma			-					4	Х

b. Proposed AT&T Signage

2 Scale Maps of Site

The following diagrams are included:

- Site Scale Map
- ノノノ
- RF Exposure Diagram RF Exposure Diagram Detailed View West AT&T Mobility, LLC Contribution

3 Antenna Inventory

The following antenna inventory was obtained by the customer and was utilized to create the site model diagrams:

Ant ID	Operator	Antenna Make & Model	Type	TX Freq	Technology	Az	Hor BW	Ant Len (ft)	Power	Power	Power Unit	Misc	TX Count	Total ERP (Watts)	Ant Gain (dBd)	7	MDT	FDT
1	AT&T MOBILITY LLC	Kathrein-Scala 742-264	Panel	850	UMTS	0	68.4	4.3	80	TPO	Watt	0	1	1267.9	12	6.3'	0°	2°
2	AT&T MOBILITY LLC	Commscope NNH4-65C-R6	Panel	737	LTE	0	75	8	160	TPO	Watt	0	1	3631.8	13.56	4.5'	0°	5°
2	AT&T MOBILITY LLC (Proposed)	Commscope NNH4-65C-R6	Panel	763	LTE	0	75	8	160	TPO	Watt	0	1	3631.8	13.56	4.5'	0°	5°
2	AT&T MOBILITY LLC	Commscope NNH4-65C-R6	Panel	1900	LTE	0	59	8	160	TPO	Watt	0	1	5496.9	15.36	4.5'	0°	2°
2	AT&T MOBILITY LLC	Commscope NNH4-65C-R6	Panel	2110	LTE	0	61	8	80	TPO	Watt	0	1	2878	15.56	4.5'	0°	2°
2	AT&T MOBILITY LLC	Commscope NNH4-65C-R6	Panel	2160	AWS3	0	61	8	80	TPO	Watt	0	1	2878	15.56	4.5'	0°	2°
3	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	2300	LTE	0	61.1	4	100	TPO	Watt	0	1	2666.9	14.26	6.5'	0°	5°
4	AT&T MOBILITY LLC	CCI Antennas OPA-65R-LCUU-H4	Panel	2300	LTE	150	61.1	4	100	TPO	Watt	0	1	2666.9	14.26	7.5'	0°	6°
5	AT&T MOBILITY LLC	Commscope NNH4-65C-R6	Panel	737	LTE	110	75	8	160	TPO	Watt	0	1	3631.8	13.56	5.5'	0°	10°
5	AT&T MOBILITY LLC (Proposed)	Commscope NNH4-65C-R6	Panel	763	LTE	110	75	8	160	TPO	Watt	0	1	3631.8	13.56	5.5'	0°	12°
5	AT&T MOBILITY LLC	Commscope NNH4-65C-R6	Panel	1900	LTE	110	59	8	160	TPO	Watt	0	1	5496.9	15.36	5.5'	0°	5°
5	AT&T MOBILITY LLC	Commscope NNH4-65C-R6	Panel	2110	LTE	110	61	8	80	TPO	Watt	0	1	2878	15.56	5.5'	0°	5°
5	AT&T MOBILITY LLC	Commscope NNH4-65C-R6	Panel	2160	AW\$3	110	61	8	80	TPO	Watt	0	1	2878	15.56	5.5'	0°	5°
6	AT&T MOBILITY LLC	Kathrein-Scala 742-264	Panel	850	UMTS	110	68.4	4.3	80	TPO	Watt	0	1	1267.9	12	7.3'	0°	2°
7	AT&T MOBILITY LLC	Kathrein-Scala 742-264	Panel	850	UMTS	270	68.4	4.3	80	TPO	Watt	0	1	1267.9	12	4.3'	2°	2°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	Panel	737	LTE	260	36.3	6	80	TPO	Watt	0	1	2128.6	14.25	3.5'	0°	6°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	Panel	763	LTE	260	36.3	6	80	TPO	Watt	0	1	2128.6	14.25	3.5'	0°	6°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	Panel	1900	LTE	260	32.3	6	160	TPO	Watt	0	1	6139.3	15.84	3.5'	0°	4°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	Panel	2110	LTE	260	27.9	6	80	TPO	Watt	0	1	3373.6	16.25	3.5'	0°	4°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	Panel	2160	AW\$3	260	27.9	6	80	TPO	Watt	0	1	3373.6	16.25	3.5'	0°	4°

			_	TX Freq		Az	Hor BW	Ant Len	_	Power	Power	Misc	тх	Total ERP	Ant Gain			
Ant ID	Operator	Antenna Make & Model	Туре	(MHz)	Technology	(Deg)	(Deg)	(ft)	Power	Туре	Unit	Loss	Count	(Watts)	(dBd)	Z	MDT	EDT
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Panel	737	LTE	260	33.8	6	80	TPO	Watt	0	1	2128.6	14.25	3.5'	0°	6°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Panel	763	LTE	260	33.8	6	80	TPO	Watt	0	1	2128.6	14.25	3.5'	0°	6°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Panel	1900	LTE	260	33.9	6	160	TPO	Watt	0	1	6153.5	15.85	3.5'	0°	4°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Panel	2110	LTE	260	27.1	6	80	TPO	Watt	0	1	3373.6	16.25	3.5'	0°	4°
8	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Panel	2160	AWS3	260	27.1	6	80	TPO	Watt	0	1	3373.6	16.25	3.5'	0°	4°
9	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	Panel	763	LTE	260	36.3	6	80	TPO	Watt	0	1	2128.6	14.25	3.5'	0°	6°
9	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	Panel	2300	LTE	260	23.6	6	100	TPO	Watt	0	1	3845.9	15.85	3.5'	0°	4°
9	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	Panel	737	LTE	260	36.3	6	80	TPO	Watt	0	1	2128.6	14.25	3.5'	0°	6°
9	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Panel	737	LTE	260	33.8	6	80	TPO	Watt	0	1	2128.6	14.25	3.5'	0°	6°
9	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Panel	763	LTE	260	33.8	6	80	TPO	Watt	0	1	2128.6	14.25	3.5'	0°	6°
9	AT&T MOBILITY LLC (Proposed)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Panel	2300	AWS3	260	25.5	6	100	TPO	Watt	0	1	3845.9	15.85	3.5'	0°	4°
10	CRICKET COMMUNICATIONS (Decommissioned)	Generic Panel	Panel	2100		60	65	4.6	0	ERP	Watt	0	0	0	15.23	15.7'	0°	0°
11	T-MOBILE	Generic Panel	Panel	700		30	65	6.3	160	TPO	Watt	0	0	2884.8	12.56	13.9'	0°	0°
12	T-MOBILE	Ericsson AIR 32 B4A B2P	Panel	1900		30	65	4.9	120	TPO	Watt	0	0	4625.7	15.86	14.5'	0°	0°
12	T-MOBILE	Ericsson AIR 32 B4A B2P	Panel	2100		30	65	4.9	120	TPO	Watt	0	0	4625.7	15.86	14.5'	0°	0°
13	T-MOBILE	Ericsson AIR 21 B2A B4P	Panel	1900		30	65	4.7	120	TPO	Watt	0	0	4132.2	15.37	14.7'	0°	0°
14	T-MOBILE	Ericsson AIR 32 B4A B2P	Panel	1900		150	65	4.9	120	TPO	Watt	0	0	4625.7	15.86	20.5'	0°	0°
14	T-MOBILE	Ericsson AIR 32 B4A B2P	Panel	2100		150	65	4.9	120	TPO	Watt	0	0	4625.7	15.86	20.5'	0°	0°
15	T-MOBILE	Ericsson AIR 21 B2A B4P	Panel	1900		150	65	4.7	120	TPO	Watt	0	0	4132.2	15.37	20.7'	0°	0°
16	T-MOBILE	Generic Panel	Panel	700		150	65	4.6	160	TPO	Watt	0	0	2618.9	12.14	20.7'	0°	0°
17	T-MOBILE	Ericsson AIR 32 B4A B2P	Panel	1900		270	65	4.9	120	TPO	Watt	0	0	4625.7	15.86	4.5'	0°	0°
17	T-MOBILE	Ericsson AIR 32 B4A B2P	Panel	2100		270	65	4.9	120	TPO	Watt	0	0	4625.7	15.86	4.5'	0°	0°
18	T-MOBILE	Generic Panel	Panel	700		270	65	6.3	160	TPO	Watt	0	0	2884.8	12.56	3.9'	0°	0°
19	T-MOBILE	Ericsson AIR 21 B2A B4P	Panel	1900		270	65	4.7	120	TPO	Watt	0	0	4132.2	15.37	4.7'	0°	0°
20	SPRINT	Generic Panel	Panel	2500		100	65	4.1	160	TPO	Watt	0	0	5071.3	15.01	17'	0°	0°
21	SPRINT	Generic Panel	Panel	862		80	65	6.3	100	TPO	Watt	0	0	2202.9	13.43	15.9'	0°	0°

AT&T Proprietary (Internal use only). Not for use or disclosure outside the AT&T companies, except under written agreement. ©2019 AT&T Intellectual property. All rights reserved.

Ant ID	Operator	Antenna Make & Model	Туре	TX Freq (MHz)	Technology	Az (Deg)	Hor BW (Deg)	Ant Len (ft)	Power	Power Type	Power Unit	Misc Loss	TX Count	Total ERP (Watts)	Ant Gain (dBd)	z	MDT	EDT
21	SPRINT	Generic Panel	Panel	1900		80	65	6.3	180	TPO	Watt	0	0	7608	16.26	15.9'	0°	0°
22	SPRINT	Generic Panel	Panel	862		270	65	6.3	100	TPO	Watt	0	0	2202.9	13.43	15.9'	0°	0°
22	SPRINT	Generic Panel	Panel	1900		270	65	6.3	180	TPO	Watt	0	0	7608	16.26	15.9'	0°	0°
23	SPRINT	Generic Panel	Panel	2500		280	65	4.1	160	TPO	Watt	0	0	5071.3	15.01	17'	0°	0°
24	SPRINT	Generic Panel	Panel	2500		0	65	4.1	160	TPO	Watt	0	0	5071.3	15.01	17'	0°	0°
25	SPRINT	Generic Panel	Panel	862		0	65	6.3	100	TPO	Watt	0	0	2202.9	13.43	16.9'	0°	0°
25	SPRINT	Generic Panel	Panel	1900		0	65	6.3	180	TPO	Watt	0	0	7608	16.26	16.9'	0°	0°
26	SPRINT	Generic Panel	Panel	2500		180	65	4.1	40	TPO	Watt	0	0	1267.8	15.01	13'	0°	0°
27	SPRINT	Generic Microwave	Aperture	80000		190	2	2	0.01	TPO	Watt	0	0	769.1	48.86	19'	0°	0°
28	SPRINT	Generic Panel	Panel	2500		260	65	4.1	40	TPO	Watt	0	0	1267.8	15.01	13'	0°	0°
29	SPRINT	Generic Microwave	Aperture	23000		280	2	0	0.02	TPO	Watt	0	0	36.9	32.66	15'	0°	0°
30	SPRINT	Generic Panel	Panel	2500		355	65	4.1	40	TPO	Watt	0	0	1267.8	15.01	13'	0°	0°
31	UNKNOWN CARRIER	Generic Microwave	Aperture	18000		90	2	2	0.01	TPO	Watt	0	0	58.3	37.66	19'	0°	0°
32	UNKNOWN CARRIER	Generic Microwave	Aperture	23000		90	2	1	0.01	TPO	Watt	0	0	18.5	32.66	16'	0°	0°
33	UNKNOWN CARRIER	Generic Omni	Omni	850		0	360	14	100	ERP	Watt	0	0	100	9.97	18'	0°	0°
34	UNKNOWN CARRIER	Generic Panel	Panel	5800		160	90	2.2	20	ERP	Watt	0	0	20	16.01	19.9'	0°	0°
35	UNKNOWN CARRIER	Generic Microwave	Aperture	80000		340	2	1	0.01	TPO	Watt	0	0	172.2	42.36	16'	0°	0°
36	UNKNOWN CARRIER	Generic Microwave	Aperture	18000		10	2	2	0.01	TPO	Watt	0	0	58.3	37.66	17'	0°	0°
37	UNKNOWN CARRIER	Generic Omni	Omni	450		0	360	4.7	100	ERP	Watt	0	0	100	2.97	17.6'	0°	0°
38	UNKNOWN CARRIER	Generic Omni	Omni	450		0	360	4.7	100	ERP	Watt	0	0	100	2.97	17.6'	0°	0°
39	UNKNOWN CARRIER	Generic Omni	Omni	850		0	360	14	100	ERP	Watt	0	0	100	9.97	18'	0°	0°
40	UNKNOWN CARRIER	Generic Microwave	Aperture	18000		170	0	0	0.01	TPO	Watt	0	0	58.3	37.66	17'	0°	0°
41	UNKNOWN CARRIER	Generic Omni	Omni	850		0	360	14	100	ERP	Watt	0	0	100	9.97	18'	0°	0°

Note: The Z reference indicates the bottom of the antenna height above the main site level unless otherwise indicated. Effective Radiated Power (ERP is provided by the operator or based on Sitesafe experience. The values used in the modeling may be greater than are currently deployed. For other operators at this site the use of "Generic" as an antenna model or "Unknown" for a wireless operator means the information with regard to operator, their FCC license and/or antenna information was not available nor could it be secured while on site. Other operator's equipment, antenna models and powers used for modeling are based on obtained information or Sitesafe experience. Proposed equipment is tagged as (Proposed) under Operator or Antenna Make & Model.

Note: The 763 MHz LTE technology is being added to existing antennas.

Emission Predictions 4

In the RF Exposure Simulations below, all heights are reflected with respect to main site level. In most rooftop cases this is the height of the main rooftop and in other cases this can be ground level. Each different height area, rooftop, or platform level is labeled with its height relative to the main site level. Emissions are calculated appropriately based on the relative height and location of that area to all antennas. The total analyzed elevations in the below RF Exposure Simulations are listed below.

MAIN LEVEL = 0' PH1 and PH3 = 10' PH2 = 15' AT&T EQP = 2'

The Antenna Inventory heights are referenced to the same level.

RF Exposure Simulation For: GILL Composite Diagram

Spatial Average 0' - 6'

Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

RF Exposure Simulation For: GILL Detail View West

Signs

0

8.6

www.sitesafe.com Site Name:GILL 3/17/2020 6:36:56 PM 17.2

Barrier

Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

RF Exposure Simulation For: GILL AT&T Mobility, LLC Contribution

% of FCC Public Exposure Limit Spatial Average 0' - 6'

Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

5 Site Compliance

5.1 Site Compliance Statement

Upon evaluation of the cumulative RF emission levels from all operators at this site, RF hazard signage and antenna locations, Sitesafe has determined that:

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

Based on measurement or predictions, other wireless operators on this site may be out of RF exposure compliance with FCC regulations on this site. We recommend that those operators review this site with respect to RF exposure compliance.

The compliance determination is based on General Public RFE levels derived from theoretical modeling, RF signage placement, proposed antenna inventory and the level of restricted access to the antennas at the site. Any deviation from the proposed AT&T Mobility, LLC deployment plan could result in the site being rendered non-compliant.

Modeling is used for determining compliance and the percentage of MPE contribution.

5.2 Actions for Site Compliance

Based on FCC regulations, common industry practice, and our understanding of AT&T Mobility, LLC's RF Safety Policy requirements, this section provides a statement of recommendations for site compliance. Recommendations have been proposed based on our understanding of existing access restrictions, signage, and an analysis of predicted RFE levels.

AT&T Mobility, LLC will be made compliant if the following changes are implemented:

AT&T Mobility, LLC Proposed Alpha Sector Location

(2) Yellow Caution 2 sign(s) required one on each side of the sector. Install a barrier that is 4' long, comprised of (1) segment(s) and an estimated (2) stanchions, as depicted in the site scale map.

Install (1) total Caution 2 sign(s) on the proposed barrier stanchions.

/ 4' segment: (1) Caution 2 sign(s)

Install a barrier that is 7' long, comprised of (1) segment(s) and an estimated (2) stanchions, as depicted in the site scale map.

Install (1) total Caution 2 sign(s) on the proposed barrier stanchions.

J 7' segment: (1) Caution 2 sign(s)

AT&T Mobility, LLC Proposed Beta Sector Location

(2) Yellow Caution 2 sign(s) required one on each side of the sector. Install a barrier that is 33' long, comprised of (3) segment(s) and an estimated (7) stanchions, as depicted in the site scale map.

Install (6) total Caution 2 sign(s) on the proposed barrier stanchions.

11' segment: (2) Caution 2 sign(s)

14' segment: (3) Caution 2 sign(s)

8' segment: (1) Caution 2 sign(s)

Install a barrier that is 4' long, comprised of (1) segment(s) and an estimated (2) stanchions, as depicted in the site scale map.

Install (1) total Caution 2 sign(s) on the proposed barrier stanchions.

/ 4' segment: (1) Caution 2 sign(s)

AT&T Mobility, LLC Proposed Gamma Sector Location

(2) Red Warning 2 sign(s) required one on each side of the sector. Install a barrier that is 6' long, comprised of (1) segment(s) and an estimated (2) stanchions, as depicted in the site scale map.

Install (1) total Warning 2 sign(s) on the proposed barrier stanchions.

) 6' segment: (1) Warning 2 sign(s)

Install a barrier that is 8' long, comprised of (1) segment(s) and an estimated (2) stanchions, as depicted in the site scale map.

Install (1) total Warning 2 sign(s) on the proposed barrier stanchions.

/ 8' segment: (1) Warning 2 sign(s)

AT&T Mobility, LLC is predicted to exceed 5% of the GP limit in an area near T-Mobile antennas #17, #18 and #19 that is predicted to exceed that limit and no signs or barriers are in place. AT&T Mobility, LLC should work with T-Mobile to ensure compliance at this location.

Install a barrier that is 14' long on the right side of T-Mobile's antennas #17, #18 and #19, comprised of (2) segment(s) and an estimated (3) stanchions, as depicted in the site scale map

Recommended per AT&T Mobility, LLC's Policy:

Site Access Location

Sitesafe recommends that all AT&T Mobility, LLC signage be removed from all access points, as they are not required by AT&T Mobility, LLC's signage policy.

Notes:

-) Signage on the barriers should be placed on the stanchions no more than 8' apart from each other.
-) Barriers were only recommended in areas predicted to exceed the General Public MPE limit greater than 6' from the unprotected roof edge. All other predicted to exceed areas are within 6' of the unprotected roof edge.
- Any existing signage that conflicts with the proposed signage in this report should be removed per AT&T Signage Posting Rules.
-) Ensure all existing signage documented in this report still exist at the site, unless otherwise indicated.

Other Operator Antennas:

T-Mobile should review their Gamma sector.

6 Reviewer Certification

The reviewer whose signature appears below hereby certifies and affirms:

That I am an employee of Site Safe, LLC, in Vienna, Virginia, at which place the staff and I provide RF compliance services to clients in the wireless communications industry; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission (FCC) as well as the regulations of the Occupational Safety and Health Administration (OSHA), both in general and specifically as they apply to the FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields; and

That I have thoroughly reviewed this Site Compliance Report and believe it to be true and accurate to the best of my knowledge as assembled by and attested to by Leo Romero.

March 18, 2020

Appendix A – Statement of Limiting Conditions

Sitesafe has provided computer generated model(s) in this Site Compliance Report to show approximate dimensions of the site, and the model is included to assist the reader of the compliance report to visualize the site area, and to provide supporting documentation for Sitesafe's recommendations.

Sitesafe may note in the Site Compliance Report any adverse physical conditions, such as needed repairs, that Sitesafe became aware of during the normal research involved in creating this report. Sitesafe will not be responsible for any such conditions that do exist or for any engineering or testing that might be required to discover whether such conditions exist. Because Sitesafe is not an expert in the field of mechanical engineering or building maintenance, the Site Compliance Report must not be considered a structural or physical engineering report.

Sitesafe obtained information used in this Site Compliance Report from sources that Sitesafe considers reliable and believes them to be true and correct. Sitesafe does not assume any responsibility for the accuracy of such items that were furnished by other parties. When conflicts in information occur between data collected by Sitesafe provided by a second party and data collected by Sitesafe, the data will be used.

Appendix B – Regulatory Background Information

FCC Rules and Regulations

In 1996, the Federal Communications Commission (FCC) adopted regulations for evaluating the effects of RF emissions in 47 CFR § 1.1307 and 1.1310. The guideline from the FCC Office of Engineering and Technology is Bulletin 65 ("OET Bulletin 65"), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, Edition 97-01, published August 1997. Since 1996, the FCC periodically reviews these rules and regulations as per their congressional mandate.

FCC regulations define two separate tiers of exposure limits: Occupational or "Controlled environment" and General Public or "Uncontrolled environment". The General Public limits are generally five times more conservative or restrictive than the Occupational limit. These limits apply to accessible areas where workers or the general public may be exposed to Radio Frequency (RF) electromagnetic fields.

Occupational or Controlled limits apply in situations in which persons are exposed as a consequence of their employment and where those persons exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

An area is considered a Controlled environment when access is limited to these aware personnel. Typical criteria are restricted access (i.e. locked or alarmed doors, barriers, etc.) to the areas where antennas are located coupled with proper RF warning signage. A site with Controlled environments is evaluated with Occupational limits.

All other areas are considered Uncontrolled environments. If a site has no access controls or no RF warning signage it is evaluated with General Public limits.

The theoretical modeling of the RF electromagnetic fields has been performed in accordance with OET Bulletin 65. The Maximum Permissible Exposure (MPE) limits utilized in this analysis are outlined in the following diagram:

FCC Limits for Maximum Permissible Exposure (MPE) Plane-wave Equivalent Power Density

Limits for Occupational/Controlled Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (E)	Magnetic Field Strength	Power Density (S) (mW/cm²)	Averaging Time E ² , H ² or S (minutes)
	(V/m)	(H) (A/m)		
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f²)*	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-			5	6
100,000				

Limits for General Population/Uncontrolled Exposure (MPE)

Frequency	Electric	Magnetic	Power	Averaging Time E ² ,			
Range	Field	Field	Density (S)	H ² or S (minutes)			
(MHz)	Strength (E)	Strength	(mW/cm²)				
	(V/m)	(H) (A/m)					
0.3-1.34	614	1.63	(100)*	30			
1.34-30	824/f	2.19/f	(180/f²)*	30			
30-300	27.5	0.073	0.2	30			
300-1500			f/1500	30			
1500-			1.0	30			
100,000							
f = frequ	uency in MHz	*Plane-wave equivalent power density					

OSHA Statement

The General Duty clause of the OSHA Act (Section 5) outlines the occupational safety and health responsibilities of the employer and employee. The General Duty clause in Section 5 states:

(a) Each employer –

- shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees;
- (2) shall comply with occupational safety and health standards promulgated under this Act.
- (b) Each employee shall comply with occupational safety and health standards and all rules, regulations, and orders issued pursuant to this Act which are applicable to his own actions and conduct.

OSHA has defined Radiofrequency and Microwave Radiation safety standards for workers who may enter hazardous RF areas. Regulation Standards 29 CFR § 1910.147 identify a generic Lockout/Tagout procedure aimed to control the unexpected energization or startup of machines when maintenance or service is being performed.

Appendix C – Safety Plan and Procedures

The following items are general safety recommendations that should be administered on a site by site basis as needed by the carrier.

<u>General Maintenance Work</u>: Any maintenance personnel required to work immediately in front of antennas and / or in areas indicated as above 100% of the Occupational MPE limits should coordinate with the wireless operators to disable transmitters during their work activities.

Training and Qualification Verification: All personnel accessing areas indicated as exceeding the General Population MPE limits should have a basic understanding of EME awareness and RF Safety procedures when working around transmitting antennas. Awareness training increases a worker's understanding to potential RF exposure scenarios. Awareness can be achieved in a number of ways (e.g. videos, formal classroom lecture or internet-based courses).

Physical Access Control: Access restrictions to transmitting antennas locations is the primary element in a site safety plan. Examples of access restrictions are as follows:

- Locked door or gate
- Alarmed door
- Locked ladder access
- Restrictive Barrier at antenna (e.g. Chain link with posted RF Sign)

<u>RF Signage</u>: Everyone should obey all posted signs at all times. RF signs play an important role in properly warning a worker prior to entering into a potential RF Exposure area.

Assume all antennas are active: Due to the nature of telecommunications transmissions, an antenna transmits intermittently. Always assume an antenna is transmitting. Never stop in front of an antenna. If you have to pass by an antenna, move through as quickly and safely as possible thereby reducing any exposure to a minimum.

<u>Maintain a 3-foot clearance from all antennas</u>: There is a direct correlation between the strength of an EME field and the distance from the transmitting antenna. The further away from an antenna, the lower the corresponding EME field is.

Site RF Emissions Diagram(s): Section 4 of this report contains RF Diagram(s) that outline various theoretical Maximum Permissible Exposure (MPE) areas at the site. The modeling is a worst-case scenario assuming a duty cycle of 100% for each transmitting antenna at full power. This analysis is based on one of two access control criteria: General Public criteria means the access to the site is uncontrolled and anyone can gain access. Occupational criteria means the access to the antenna locations.

Appendix D – RF Emissions

The RF Emissions Simulation(s) in this report display theoretical spatially averaged percentage of the Maximum Permissible Exposure for all systems at the site unless otherwise noted. These diagrams use modeling as prescribed in OET Bulletin 65 and assumptions detailed in Appendix E.

The key at the bottom of each RF Emissions Simulation indicates percentages displayed referenced to FCC General Public Maximum Permissible Exposure (MPE) limits. Color coding on the diagram is as follows:

-) Areas indicated as Gray are predicted to be below 5% of the MPE limits. Gray represents areas more than 20 times below the most conservative exposure limit. Gray areas are accessible to anyone.
-) Green represents areas are predicted to be between 5% and 100% of the MPE limits. Green areas are accessible to anyone.
-) Blue represents areas predicted to exceed the General Public MPE limits but are less than Occupational limits. Blue areas should be accessible only to RF trained workers.
- J Yellow represents areas predicted to exceed Occupational MPE limits. Yellow areas should be accessible only to RF trained workers able to assess current exposure levels.
-) Red represents areas predicted to have exposure more than 10 times the Occupational MPE limits. **Red indicates that the RF levels must be reduced prior to access.** An RF Safety Plan is required which outlines how to reduce the RF energy in these areas prior to access.

If trained occupational personnel require access to areas that are delineated as above 100% of the limit, Sitesafe recommends that they utilize the proper personal protection equipment (RF monitors), coordinate with the carriers to reduce or shutdown power, or make real-time power density measurements with the appropriate power density meter to determine real-time MPE levels. This will allow the personnel to ensure that their work area is within exposure limits.

Appendix E – Assumptions and Definitions

General Model Assumptions

In this site compliance report, it is assumed that all antennas are operating at **full power at all times**. Software modeling was performed for all transmitting antennas located on the site. Sitesafe has further assumed a 100% duty cycle and maximum radiated power.

The modeling is based on recommendations from the FCC's OET-65 bulletin with the following variances per AT&T guidance. Reflection has not been considered in the modeling, i.e. the reflection factor is 1.0. The near / far field boundary has been set to 1.5 times the aperture height of the antenna and modeling beyond that point is the lesser of the near field cylindrical model and the far field model taking into account the gain of the antenna.

The site has been modeled with these assumptions to show the maximum RF energy density. Areas modeled with exposure greater than 100% of the General Public MPE level may not actually occur but are shown as a prediction that could be realized. Sitesafe believes these areas to be safe for entry by occupationally trained personnel utilizing appropriate personal protective equipment (in most cases, a personal monitor).

Use of Generic Antennas

For the purposes of this report, the use of "Generic" as an antenna model, or "Unknown" for an operator means the information about a carrier, their FCC license and/or antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of equipment, antenna models, and transmit power to model the site. If more specific information can be obtained for the unknown measurement criteria, Sitesafe recommends remodeling of the site utilizing the more complete and accurate data. Information about similar facilities is used when the service is identified and associated with a particular antenna. If no information is available regarding the transmitting service associated with an unidentified antenna, using the antenna manufacturer's published data regarding the antenna's physical characteristics makes more conservative assumptions.

Where the frequency is unknown, Sitesafe uses the closest frequency in the antenna's range that corresponds to the highest Maximum Permissible Exposure (MPE), resulting in a conservative analysis.

Appendix F – Definitions

5% Rule – The rules adopted by the FCC specify that, in general, at multiple transmitter sites actions necessary to bring the area into compliance with the guidelines are the shared responsibility of all licensees whose transmitters produce field strengths or power density levels at the area in question in excess of 5% of the exposure limits. In other words, any wireless operator that contributes 5% or greater of the MPE limit in an area that is identified to be greater than 100% of the MPE limit is responsible for taking corrective actions to bring the site into compliance.

Compliance – The determination of whether a site complies with FCC standards with regards to Human Exposure to Radio Frequency Electromagnetic Fields from transmitting antennas.

Decibel (dB) – A unit for measuring power or strength of a signal.

Duty Cycle – The percent of pulse duration to the pulse period of a periodic pulse train. Also, may be a measure of the temporal transmission characteristic of an intermittently transmitting RF source such as a paging antenna by dividing average transmission duration by the average period for transmission. A duty cycle of 100% corresponds to continuous operation.

Effective (or Equivalent) Isotropic Radiated Power (EIRP) – The product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna.

Effective Radiated Power (ERP) – The product of the power supplied to the antenna and the antenna gain in a given direction relative to a half-wave dipole antenna.

Gain (of an antenna) – The ratio of the maximum power in a given direction to the maximum power in the same direction from an isotropic radiator. Gain is a measure of the relative efficiency of a directional antenna as compared to an omnidirectional antenna.

General Population/Uncontrolled Environment – Defined by the FCC as an area where RF exposure may occur to persons who are **unaware** of the potential for exposure and who have no control over their exposure. General Population is also referenced as General Public.

Generic Antenna – For the purposes of this report, the use of "Generic" as an antenna model means the antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use its industry specific knowledge of antenna models to select a worst-case scenario antenna to model the site.

Isotropic Antenna – An antenna that is completely non-directional. In other words, an antenna that radiates energy equally in all directions.

Maximum Measurement – This measurement represents the single largest measurement recorded when performing a spatial average measurement.

Maximum Permissible Exposure (MPE) – The rms and peak electric and magnetic field strength, their squares, or the plane-wave equivalent power densities associated with these fields to which a person may be exposed without harmful effect and with acceptable safety factor.

Occupational/Controlled Environment – Defined by the FCC as an area where RF exposure may occur to persons who are **aware** of the potential for exposure as a condition of employment or specific activity and can exercise control over their exposure.

OET Bulletin 65 – Technical guideline developed by the FCC's Office of Engineering and Technology to determine the impact of RF exposure on humans. The guideline was published in August 1997.

OSHA (Occupational Safety and Health Administration) – Under the Occupational Safety and Health Act of 1970, employers are responsible for providing a safe and healthy workplace for their employees. OSHA's role is to promote the safety and health of America's working men and women by setting and enforcing standards; providing training, outreach and education; establishing partnerships; and encouraging continual process improvement in workplace safety and health. For more information, visit www.osha.gov.

Radio Frequency Exposure or Electromagnetic Fields – Electromagnetic waves that are propagated from antennas through space.

Spatial Average Measurement – A technique used to average a minimum of ten (10 measurements taken in a ten (10 second interval from zero (0 to six (6 feet. This measurement is intended to model the average energy a 6-foot tall human body will absorb while present in an electromagnetic field of energy.

Transmitter Power Output (TPO) – The radio frequency output power of a transmitter's final radio frequency stage as measured at the output terminal while connected to a load.

Appendix G – References

The following references can be followed for further information about RF Health and Safety.

Site Safe, LLC http://www.sitesafe.com FCC Radio Frequency Safety http://www.fcc.gov/encyclopedia/radio-frequency-safety National Council on Radiation Protection and Measurements (NCRP) http://www.ncrponline.org Institute of Electrical and Electronics Engineers, Inc., (IEEE) http://www.ieee.org American National Standards Institute (ANSI) http://www.ansi.org Environmental Protection Agency (EPA) http://www.epa.gov/radtown/wireless-tech.html National Institutes of Health (NIH) http://www.niehs.nih.gov/health/topics/agents/emf/ Occupational Safety and Health Agency (OSHA) http://www.osha.gov/SLTC/radiofrequencyradiation/ International Commission on Non-Ionizing Radiation Protection (ICNIRP) http://www.icnirp.org World Health Organization (WHO) http://www.who.int/peh-emf/en/ National Cancer Institute http://www.cancer.gov/cancertopics/factsheet/Risk/cellphones American Cancer Society (ACS) http://www.cancer.org/docroot/PED/content/PED 1 3X Cellular Phone Towers.asp?sit earea=PED European Commission Scientific Committee on Emerging and Newly Identified Health Risks http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr o 022.pdf Fairfax County, Virginia Public School Survey http://www.fcps.edu/fts/safety-security/RFEESurvey/ UK Health Protection Agency Advisory Group on Non-Ionizing Radiation http://www.hpa.org.uk/webw/HPAweb&HPAwebStandard/HPAweb C/1317133826368 Norwegian Institute of Public Health http://www.fhi.no/dokumenter/545eea7147.pdf

Trylon

Prepared For

Structural Analysis

Steven Uecke, P.E. MD P.E. License No. 42852 Date: 02-28-20 Expires: 11-28-20 GILL 02/28/20 PASS (44.6%)

TABLE OF CONTENT

STRUCTURAL ANALYSIS REPORT	2
Standard Conditions	4
Structural Calculations	5
Codes and Standards	6
Equipment Platform Analysis	7
Wind Load on Equipment	7
3-D View	9
Node Numbers	10
Member Labels	11
Member Shapes	12
Dead Load	13
Live Load	14
Ex. Equipment Load	15
Proposed Equipment Load	16
Wind Load x-direction	17
Wind Load z-direction	18
Member Stress Ration	19
Analysis Report	20
References	24
Construction Drawing by Trylon dated 01/21/2020	25
Previous construction drawings prepared by BC Architects Engineers dated 01/13/2011	27

STRUCTURAL ANALYSIS REPORT

SMARTLINK

1362 Mellon Road, Suite 140 Hanover, MD 21076

Attention: Nathan Lenig

Reference: Roof Frame Analysis – Engineering Assessment, located at 9727 Mount Pisgah Road, Silver Spring, MD 20903.

Trylon Job No.:	157156
AT&T Site Name:	GILL
AT&T Site FA#:	10128448
Site Address:	9727 Mount Pisgah Road, Silver Spring, MD 20903
Tower Profile:	Rooftop

Dear Nathan Lenig:

We have been provided with RF information for above-referenced site. AT&T is proposing to add new equipment to the existing equipment platform.

A revised equipment schematic has been provided to us. We have been asked to evaluate this information to determine whether or not the existing roof framing supporting the equipment platform is structurally adequate to safely support the proposed loading changes. The structural evaluation refers to the equipment cabinet installed at the existing rooftop equipment platform located at 9727 Mount Pisgah Road, Silver Spring, MD 20903.

The proposed changes were provided to us in scope of work Trylon drawing package dated 01/21/2020. The equipment platform is located at **133-ft 6-in** elevation. The existing equipment platform framing was verified for the loading from the proposed new and existing equipment cabinet.

The existing platform framing information that we considered in our evaluation is based on the previous construction drawings prepared by "BC Architects Engineers" dated 01/13/2011. The structural members that we considered in our analysis are presented in the attached sketches.

We consider that the existing equipment platform framing is in "like new" condition without cracks or deteriorated parts.

Proposed Equipment Cabinet:

Status	Equipment Cabinet	Qty.	Weight (lbs)
Proposed	NETXTEND Battery Cabinet	1	2610.0
Toposea	DC12	3	56.3
Existing	TE41 Cabinet	1	847.0
	9412 Cabinet	1	230.0
	UMTS Cabinet	1	1200.0
	FLEX Cabinet	1	600.0*

* Weight assumed

CONCLUSIONS AND RECOMMENDATIONS

Based on information provided, our calculations conclude that the existing equipment platform supporting the proposed new and existing equipment cabinet located at **133-ft 6-in** elevation of the Rooftop at the specified address, are **STRUCTURALLY ADEQUATE** to safely support the proposed equipment, subject to the attached Standard Conditions on page 4. The proposed new addition replaces the similar weight in the equipment and the existing roof frame supporting the equipment platform shall be structurally adequate.

Should you have any questions, comments or require additional information, please do not hesitate to call.

Sincerely,

Analysis performed by:

Ashraful Alam, PhD, PE

Standard Conditions for Providing Structural Consulting Services on Existing Structures

- 1. Roof structure is analyzed to the best of our ability using all information that is provided or can be obtained during fieldwork (if authorizes by client). If the existing conditions are not as we have represented in this analysis, we should be contacted to evaluate the significance of the deviation and revise the assessment accordingly.
- 2. The structural analysis has been performed assuming that existing roof slab is in "like new" condition. No allowance was made for excessive corrosion, damaged or missing structural members, loose bolts, misaligned parts, or any reduction in strength due to the age or fatigue of the product.
- 3. The structural analysis provided is an assessment of the primary load carrying capacity of the structure. We provide a limited scope of service. In some cases, we cannot verify the capacity of every structural parameter. In some cases, structural fabrication details are unknown at the time of our analysis, and the detailed field measurement of some of the required details may not be possible. In instances where we cannot perform connection capacity calculations, it is assumed that the existing manufactured connections develop the full capacity of the primary members being connected.
- 4. We cannot be held responsible for temporary and unbalanced loads on the roof structure. Our analysis is based on a particular loading arrangement or as-built field condition. We are not responsible for the methods and means of how the loading arrangement is accomplished by the contractor. These methods and means may include rigging of equipment or hardware to lift and locate, temporary hanging of equipment in locations other than the final arrangement, movement and tie off of tower riggers, personnel, and their equipment, etc.

Structural Calculations

	Project Name		Project Numb	ber
😻 Trylon	Trylon 10128448: GILL Section		157156	
			Page	
	STANDARDS AND EQU	IPMENT LATERAL LOAD	6	
Trylon TSF, Inc.	Ckd. by	Date	Calc. by	Date
	AA		AA	02/28/2020
Applicable Codes and Refere	1005.			
2015 International Building Cod	e			
ASCE 7-10 Minimum Desian Lo	ads for Buildings and Other St	ructures		
AISC Steel Construction Manua	I Fourteenth Edition			
Load Combinations (IBC 2015	LRFD):			
$\begin{array}{lll} 1.4(D+F) \\ 1.2(D+F)+1.6(L+H)+(0) \\ 1.2(D+F)+1.6(L_r \mbox{ or } S \mbox{ or } S \mbox{ or } 1.2(D+F)+1.0W+f_1L+1 \\ 1.2(D+F)+1.0E+f_1L+1 \\ 0.9D+1.0W+1.6H \\ 0.9(D+F)+1.0E+1.6H \end{array}$	0.5(L _r or S or R) R) + 1.6H + (f ₁ L or 0.5W) 1.6H + 0.5(L _r or S or R) .6H + f ₂ S	(Eq. 16-1) (Eq. 16-2) (Eq. 16-3) (Eq. 16-4) (Eq. 16-5) (Eq. 16-6) (Eq. 16-7)		
Load Combinations (IBC 2015	ASD):			
 D + F D + H + F + L D + H + F + (Lr or S or R) D + H + F + 0.75(L) + 0.75 D + H + F + (0.6W or 0.7E) D + H + F + 0.75(0.6W) + D + H + F + 0.75(0.7E) + (0.6D + 0.6W + H) 	5(L _r or S or R) ;) 0.75L + 0.75(L _r or S or R) 0.75L + 0.75S	(Eq. 16-8) (Eq. 16-9) (Eq. 16-10) (Eq. 16-11) (Eq. 16-12) (Eq. 16-13) (Eq. 16-14) (Eq. 16-15)		

0.6(D + F) + 0.7E + H•

Notations:

- D = Dead load of structure and appurtenances, excluding guy assemblies ٠
- F = Load due to fluids with well-defined pressures and maximum heights ٠
- L = Floor live load •
- H = Load due to lateral earth pressures, ground water pressure or pressure of bulk materials ٠
- L_r = Roof live load •
- R = Rain load ٠
- S = Snow load
- W = Load due to wind pressure •
- E = Combined effect of horizontal and vertical earthquake induced forces ٠
- $f_1 = 1$ for floors in places of public assembly in excess of 100 pounds per square foot, and = 0.5 for other live loads ٠
- $f_2 = 0.7$ for roof configurations that do not shed snow off the structure, and = 0.2 for other roof configurations ٠

••••••••	Project Name			Project Numl	ber	
Trylon 10128448: G Section		SILL		157156		
				Page		
Thulon TOE Jac	STANDARD	S AND EQUIPME	NT LATERAL LOAD	7		
Tryion TSF, Inc.	Ckd. by		Date	Calc. by	Date	
	AA			AA	02/28/20	
WIND LOAD ON EQUIPMENT						
ASCE 7-10: Section 29.5.1		V = 115 mpb				
Basic willu speeu		v = 115 mpn				
Velocity pressure exponent coef	(Table 26 6-1)	" K⊣ – 0.85				
Exposure category (Sect. 2.6.5)	(12010-20.0-1)	Ra = 0.05				
Height of building		b – 136 50 ft				
Topography factor not significant	(Sect 266)	$K_{-1} = 1.00$				
Nominal height of atmospheric h	oundary laver	$7_{21} = 1.00$				
3-second quet wind enced nowe	r law exponent	$\alpha = 9.5$				
Terrain constant		ω = 0.0 K ₀ = 1.00				
Minimum value for K		$K_{min} = mav(2)$	$11 \times (7/7_{\alpha}) \wedge (2/\alpha) = 0.85) =$	1 351		
Velocity pressure coefficient (Se	rt 2652	$n_{zmin} = \Pi dx(2.01 \times (2/2g)'(2/\alpha), 0.85) = 1.351$				
Velocity pressure	01. 2.0.0.2)	$n_{\rm c} = 0.00256$	$K_{-} \times K_{-} \times K_{+} \times V^{2} \times 1$ pef	$/mnh^2 - 38.887 nef$		
velocity pressure		qn = 0.00230 ×		mpn – 30.001 psr		
NETXTEND Cabinet						
Length of equipment		$L_1 = 3.1 \text{ ft}$				
Width of equipment		W ₁ =3.0 ft				
Height of equipment		$H_1 = 6.0 \text{ ft}$				
Vertical projected area normal to	wind	$A_{f1x} = L_1 \times H_1 =$	= 18.600 ft ²			
Vertical projected area Transver	se to wind	$A_{f1z} = W_1 \times H_1$	= 18.000 ft ²			
Horizontal projected area norma	to wind	$A_{r1} = L_1 \times W_1 =$	9.300 ft ²			
TE41 Cabinet						
Length of equipment		L ₂ = 3.33 ft				
Width of equipment		W ₂ =3.0 ft				
Height of equipment		$H_2 = 6.17 \text{ ft}$				
Vertical projected area normal to	wind	$A_{f2x} = L_2 \times H_2 =$	= 20.546 ft ²			
Vertical projected area Transver	se to wind	$A_{f2z} = W_2 \times H_2$	= 18.510 ft ²			
Horizontal projected area norma	to wind	$A_{r2} = L_2 \times W_2 =$	= 9.990 ft ²			
UMTS Cabinet						
Length of equipment		L ₃ = 2.6 ft				
Width of equipment		W ₃ =2.5 ft				
Height of equipment		$H_3 = 7.4 \text{ ft}$				
Vertical projected area normal to	wind	$A_{f3x} = L_3 \times H_3 =$	= 19.240 ft ²			
Vertical projected area Transver	se to wind	$A_{f3z} = W_3 \times H_3$	= 18.500 ft ²			
Horizontal projected area norma	to wind	$A_{r3} = L_3 \times W_3 =$	6.500 ft ²			
Horizontal projected area norma	to wind	$A_{r4} = L_4 \times W_4 =$	4.367 ft ²			
Wind force (Normal and Trans	verse)					
Pressure coefficient		GCf = 1.9				
Lateral force due to wind (N-dire	ction)	$F_{h1x} = max(16)$	psf, $q_h \times GC_f$) × $A_{f1x} = 13$	74.273 lb		

	Project Name		Project Number	
Trylon 10128448: GILL			157156	
	Section		Page	
Trylon TSE Inc	STANDARDS AND EQUIPMENT LATERAL LOAD		8	
	Ckd. by	Date	Calc. by	Date
	AA		AA	02/28/2020

Lateral force due to wind (N-direction) Lateral force due to wind (T-direction) Lateral force due to wind (N-direction) Lateral force due to wind (T-direction)
$$\begin{split} F_{h2x} &= max(16 \text{ psf}, \, q_h \times GC_f) \times A_{f2x} = \textbf{1518.062} \text{ lb} \\ F_{h2z} &= max(16 \text{ psf}, \, q_h \times GC_f) \times A_{f2z} = \textbf{1367.623} \text{ lb} \\ F_{h3x} &= max(16 \text{ psf}, \, q_h \times GC_f) \times A_{f3x} = \textbf{1421.560} \text{ lb} \end{split}$$

 $F_{h3z} = max(16 \text{ psf}, q_h \times GC_f) \times A_{f3z} = \textbf{1366.884} \text{ lb}$

Loads: BLC 4, WLZ Envelope Only Solution		
1 Total Construction 1		Page - 9
Iryion		
AA	Gill	Feb 4, 2020 at 2:30 PM

Loads: BLC 4, WLZ Envelope Only Solution	the the trace of t	Material Sets Agg Agg Agg Agg Agg Agg Agg Agg Agg Ag
Trylon		Page - 11
AA	Gill	Feb 4, 2020 at 2:32 PM
167166	 	AT&T Gill Equipment Platform r2d
157156	Member Labels	AI&T_Gill_Equipment Platform.r3d

Loads: BLC 4, Envelope Only	WLZ Solution	Maria Mari	Aserial Sets Rigid Aserial Ase Gr.36
		1	1 ayo - 12
		-	
AA		Gill	Feb 4, 2020 at 2:32 PM

Lister BLC 1. D	
Envelope Only Solution	Dara 10
Trylon	Page - 13
AA Gill	Feb 4, 2020 at 2:32 PM
157156 Dead Load	AT&T_Gill_Equipment Platform.r3d

eopsf	-Opsf	
Loads: BLC 2, LL Envelope Only Solution Trylon		Page - 14
Loads: BLC 2, LL Envelope Only Solution Trylon AA	Gill	Page - 14 Feb 4, 2020 at 2:33 PM
Loads: BLC 2, LL Envelope Only Solution Trylon AA	Gill	Page - 14 Feb 4, 2020 at 2:33 PM

	600b 400b	
Loads: BLC 5, EX. EQ Envelope Only Solution		
Trylon		Page - 15
AA	Gill	Feb 6, 2020 at 3:31 PM
157156	Ex. Equipment Load	AT&T_Gill_Equipment Platform.r3d
107 100		

Loads: BLC 6, NEW EQ		
		Page - 16
		Fage - 10
AA	Gill	Feb 6, 2020 at 3:31 PM
157156	New Equipment Load	AT&T_Gill_Equipment Platform.r3d

Loads: BLC 3, WLX Envelope Only Solution		
		Page - 17
		Faye - 17
AA 457450		TED 28, 2020 AT 10:26 AM
157156	Wind Load x-direction	AI&I_GIII_Equipment Platform.r3d

Loads: BLC 4, Envelope Only	WLZ Solution	1374b 1519b 1519b	
Trylon			Page - 18
		Gill	Feb 28, 2020 at 10:27 AM
157156		Wind Load z-direction	AT&T Gill Equipment Platform r3d
157156		Wind Load z-direction	AI&I_GIII_Equipment Platform.r3d

TrylonPage - 19AAGillFeb 28, 2020 at 10:27 AM157156Member Stress RatioAT&T_Gill_Equipment Platform.r3d	Member Code Checks Displayed (Enve		Code Check (Env) 90-10 7-5-90 0-50
Fage - 19AAGillFeb 28, 2020 at 10:27 AM157156Member Stress RatioAT&T_Gill_Equipment Platform.r3d	Envelope Only Solution		Page - 19
AA Gill Feb 28, 2020 at 10:27 AM 157156 Member Stress Ratio AT&T_Gill_Equipment Platform.r3d			Faye - 19
157156 Member Stress Ratio AT&T_Gill_Equipment Platform.r3d	AA	GIII	rep 28, 2020 at 10:27 AM
	157156	Member Stress Ratio	AT&T_Gill_Equipment Platform.r3d

Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
1	N1	Ō	Ō	0	Ó	
2	N2	192	0	0	0	
3	N3	0	0	140	0	
4	N4	192	0	140	0	
5	N5	256	0	0	0	
6	N6	256	0	137	0	
7	N7	216	0	140	0	
8	N8	210	0	140	0	
9	N9	204	0	140	0	
10	N10	198	0	140	0	
11	N11	192	0	137	0	
12	N12	216	0	137	0	
13	N13	210	0	137	0	
14	N14	204	0	137	0	
15	N15	198	0	137	0	
16	N16	12	0	0	0	
17	N17	12	0	140	0	
18	N18	180	0	0	0	
19	N19	180	0	140	0	
20	N20	12	0	40	0	
21	N21	180	0	40	0	
22	N22	12	0	100	0	
23	N23	180	0	100	0	
24	N24	219	0	0	0	
25	N25	219	0	137	0	
26	N26	256	0	68.5	0	
27	N27	219	0	68.5	0	
28	N28	180	0	68.5	0	
29	N29	60	0	40	0	
30	N30	90	0	40	0	
31	N31	60	0	100	0	
32	N32	90	0	100	0	
33	N33	120	0	40	0	
34	N34	60	36	40	0	
35	N35	90	36	40	0	
36	N36	60	36	100	0	
37	N37	90	36	100	0	
38	N38	120	36	40	0	

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N1	N5		W16x26	Beam	Wide Flange	A992	Typical
2	M2	N3	N7		W16x26	Beam	Wide Flange	A992	Typical
3	M3	N11	N6		C12x20.7	Beam	Channel	A36 Gr.36	Typical
4	M4	N4	N11		RIGID	None	None	RIGID	Typical
5	M5	N10	N15		RIGID	None	None	RIGID	Typical
6	M6	N9	N14		RIGID	None	None	RIGID	Typical
7	M7	N8	N13		RIGID	None	None	RIGID	Typical
8	M8	N7	N12		RIGID	None	None	RIGID	Typical
9	M9	N17	N16		W8x18	Beam	Wide Flange	A992	Typical
10	M10	N19	N18		W8x18	Beam	Wide Flange	A992	Typical
11	M11	N20	N21		W8x21	Beam	Wide Flange	A992	Typical
12	M12	N22	N23		W8x21	Beam	Wide Flange	A992	Typical
13	M13	N6	N5		W12x26	Beam	Wide Flange	A992	Typical
14	M14	N25	N24		W8x18	Beam	Wide Flange	A992	Typical
15	M15	N28	N27		W8x18	Beam	Wide Flange	A992	Typical
16	M16	N27	N26		W8x18	Beam	Wide Flange	A992	Typical
17	M17	N31	N36		RIGID	None	None	RIGID	Typical
18	M18	N32	N37		RIGID	None	None	RIGID	Typical
19	M19	N29	N34		RIGID	None	None	RIGID	Typical
20	M20	N30	N35		RIGID	None	None	RIGID	Typical
21	M21	N33	N38		RIGID	None	None	RIGID	Typical

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	[Lcomp bot[in]	L-torqu	Kyy	Kzz	Cb	Function
1	M1	W16x26	256	6	6	Lbyy						Lateral
2	M2	W16x26	216			Lbyy						Lateral
3	M3	C12x20.7	64			Lbyy						Lateral
4	M9	W8x18	140			Lbyy						Lateral
5	M10	W8x18	140			Lbyy						Lateral
6	M11	W8x21	168			Lbyy						Lateral
7	M12	W8x21	168			Lbyy						Lateral
8	M13	W12x26	137			Lbyy						Lateral
9	M14	W8x18	137			Lbyy						Lateral
10	M15	W8x18	39			Lbyy						Lateral
11	M16	W8x18	37			Lbyy						Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	DL	DĹ	-	-1	-				7	
2	LL	LL							7	
3	WLX	WLX				2				
4	WLZ	WLZ				3				
5	EX. EQ	DL				4				
6	NEW EQ	DL				2				
7	BLC 1 Transient Area	None						22		
8	BLC 2 Transient Area	None						22		

Joint Loads and Enforced Displacements (BLC 3 : WLX)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/
1	N34	L	Х	1329
2	N37	L	Х	1368

Joint Loads and Enforced Displacements (BLC 4 : WLZ)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/
1	N34	L	Z	1374
2	N35	L	Z	1519
3	N38	L	Z	1519

Joint Loads and Enforced Displacements (BLC 5 : EX. EQ)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/
1	N35	L	Y	-847
2	N38	L	Y	-1200
3	N36	L	Y	-600
4	N37	L	Y	-230

Joint Loads and Enforced Displacements (BLC 6 : NEW EQ)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/
1	N34	L	Y	-2610
2	N22	L	Y	-168.9

Member Area Loads (BLC 1 : DL)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	N17	N22	N23	N19	Y	A-B	-15
2	N20	N22	N23	N21	Y	A-B	-15
3	N16	N20	N21	N18	Y	A-B	-15
4	N28	N27	N25	N19	Y	A-B	-15
5	N28	N27	N24	N18	Y	A-B	-15
6	N25	N6	N26	N27	Y	A-B	-15
7	N27	N26	N5	N24	Y	A-B	-15

Member Area Loads (BLC 2 : LL)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	N17	N22	N23	N19	Y	A-B	-60
2	N20	N22	N23	N21	Y	A-B	-60
3	N16	N20	N21	N18	Y	A-B	-60
4	N28	N27	N25	N19	Y	A-B	-60
5	N28	N27	N24	N18	Y	A-B	-60
6	N25	N6	N26	N27	Y	A-B	-60
7	N27	N26	N5	N24	Y	A-B	-60

Load Combinations

	Description Sol	PD	.SR	BLC	Fact	.BLC	Fact	BLC	Fact	.BLC	Fact	BLC	Fact										
1	IBC 16-1 Yes	Υ		DL	1.4																		
2	IBC 16-2 (a) Yes	Υ		DL	1.2	LL	1.6	LLS	1.6														
3	IBC 16-3 (Yes	Υ		DL	1.2	W	.5																
4	IBC 16-3 (Yes	Υ		DL	1.2	WLZ	.5																
5	IBC 16-3 (Yes	Υ		DL	1.2	W	5																
6	IBC 16-3 (Yes	Υ		DL	1.2	WLZ	5																
7	IBC 16-4 (Yes	Υ		DL	1.2	W	1	LL	.5	LLS	1												
8	IBC 16-4 (Yes	Υ		DL	1.2	WLZ	1	LL	.5	LLS	1												
9	IBC 16-4 (Yes	Υ		DL	1.2	W	-1	LL	.5	LLS	1												
10	IBC 16-4 (Yes	Υ		DL	1.2	WLZ	-1	LL	.5	LLS	1												
11	IBC 16-6 (a) Yes	Υ		DL	.9	W	1																
12	IBC 16-6 (b) Yes	Υ		DL	.9	WLZ	1																
13	IBC 16-6 (c) Yes	Υ		DL	.9	W	-1																
14	IBC 16-6 (d) Yes	Υ		DL	.9	WLZ	-1																

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N3	max	Ō	1	6608.953	2	63.057	8	Ō	1	.056	10	8.587	2
2		min	0	1	1897.057	11	-62.549	10	0	1	056	8	2.429	11
3	N2	max	0	1	12573.636	2	36.246	8	0	1	.025	8	-1.887	13
4		min	0	1	3264.065	13	-33.354	10	0	1	024	10	-3.865	2
5	N1	max	1108.183	9	6854.898	2	0	1	0	1	.001	10	0	1
6		min	-1055.206	11	2394.906	11	0	1	0	1	001	8	0	1
7	N4	max	1192.525	9	10967.955	2	0	1	.891	2	.11	11	0	1
8		min	-1125.377	11	2352.354	13	0	1	.182	11	115	9	0	1
9	N36	max	72.159	13	0	1	8.286	2	0	1	0	1	0	1
10		min	-151.227	7	0	1	2.816	11	0	1	0	1	0	1
11	N37	max	110.693	13	0	1	4.791	2	0	1	0	1	0	1
12		min	-106.848	7	0	1	1.31	13	0	1	0	1	0	1
13	N34	max	22.085	13	0	1	1431.701	10	0	1	0	1	0	1
14		min	-254.171	7	0	1	-1442.759	8	0	1	0	1	0	1
15	N35	max	88.845	13	0	1	1550.559	10	0	1	0	1	0	1
16		min	-101.013	7	0	1	-1551.917	8	0	1	0	1	0	1
17	N38	max	200.464	9	0	1	1517.385	10	0	1	0	1	0	1
18		min	-1.266	11	0	1	-1525.004	8	0	1	0	1	0	1
19	Totals:	max	2697	9	37005.443	2	4412	10						
20		min	-2697	11	10758.835	11	-4412	8						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code C	.Loc[in]	LC	Shear	Loc[in]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y	.phi*Mn zC	b Eqn
1	M1	W16x26	.262	192	2	.085	192	y	2	105423.4	345600	20.55	59.959 1.	H1-1b
2	M2	W16x26	.081	191.25	2	.069	191.25	y	2	46435.588	345600	20.55	139.651 3.	H1-1b
3	M3	C12x20.7	.079	0	2	.066	24	y	2	140262.4	196992	7.438	69.12 1.	H1-1b
4	M9	W8x18	.409	99.167	2	.112	140	y	2	91863.311	236700	17.475	50.708 1.	H1-1b
5	M10	W8x18	.414	99.167	2	.115	140	ý	2	91863.311	236700	17.475	49.534 1.	H1-1b
6	M11	W8x21	.446	77	2	.213	0	y	10	78201.637	277200	21.337	56.95 1.	H1-1b
7	M12	W8x21	.258	77	2	.082	0	ý	2	78201.637	277200	21.337	56.703 1.	H1-1b
8	M13	W12x26	.083	68.5	9	.014	137	y	2	187087.8	344250	30.637	121.924 1.	H1-1b
9	M14	W8x18	.128	68.5	2	.040	0	ý	2	95687.229	236700	17.475	51.705 1.	H1-1b
10	M15	W8x18	.003	19.5	9	.001	39	y	1	219949.2	236700	17.475	63.75 1.	H1-1b
11	M16	W8x18	.002	18.5	9	.001	0	ý	2	221568.4	236700	17.475	63.75 1.	H1-1b

References

Y:/Drawings - 2008/AT&7/Roof Top/Gill_Chateau Apartments - 10128448/CD's REVISED REV-10 08-16-10/S1.dwg

T&TA

FA#: 10128448

USID: 100205

COUNTY: MONTGOMERY

GILL

STRUCTURE TYPE:

SITE NAME:

EXISTING 133'-6" BUILDING

GENERAL NOTES:

- THE SUBCONTRACTOR SHALL GIVE ALL NOTICES AND REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY, MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS, AND LOCAL AND STATE JURISDICTIONAL CODES BEARING ON THE PERFORMANCE OF THE WORK. THE WORK PERFORMED ON THE PROJECT AND THE MATERIALS INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES.
- 2. THE ARCHITECT/ENGINEER HAVE MADE EVERY EFFORT TO SET FORTH IN THE CONSTRUCTION AND CONTRACT DOCUMENTS THE COMPLETE SCOPE OF WORK. THE SUBCONTRACTOR BIDDING THE JOB IS NEVERTHELESS CAUTIONED THAT MINOR OMISSIONS OR ERRORS IN THE DRAWINGS AND OR SPECIFICATIONS SHALL NOT EXCUSE SAID SUBCONTRACTOR FROM COMPLETING THE PROJECT AND IMPROVEMENTS IN ACCORDANCE WITH THE INTENT OF THESE DOCUMENTS.
- THE SUBCONTRACTOR OR BIDDER SHALL BEAR THE RESPONSIBILITY OF 3. NOTIFYING (IN WRITING) THE AT&T REPRESENTATIVE OF ANY CONFLICTS, ERRORS OR OMISSIONS PRIOR TO THE SUBMISSION OF SUBCONTRACTOR'S PROPOSAL OR PERFORMANCE OF WORK. IN THE EVENT OF DISCREPANCIES, THE SUBCONTRACTOR SHALL PRICE THE MORE COSTLY OR EXTENSIVE WORK, UNLESS DIRECTED IN WRITING OTHERWISE.
- THE SCOPE OF WORK SHALL INCLUDE FURNISHING ALL MATERIALS, EQUIPMENT, LABOR AND ALL OTHER MATERIAL AND LABOR DEEMED NECESSARY TO COMPLETE THE WORK/PROJECT AS DESCRIBED HEREIN.
- THE SUBCONTRACTOR SHALL VISIT THE JOB SITE PRIOR TO THE SUBMISSION OF BIDS OR PERFORMING WORK TO FAMILIARIZE THEMSELVES WITH THE FIELD CONDITIONS AND TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- THE SUBCONTRACTOR SHALL OBTAIN AUTHORIZATION TO PROCEED WITH CONSTRUCTION PRIOR TO STARTING WORK ON ANY ITEM NOT CLEARLY DEFINED BY THE CONSTRUCTION DRAWINGS/CONTRACT DOCUMENTS.
- THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS ACCORDING TO THE MANUFACTURER'S/VENDOR'S SPECIFICATIONS UNLESS INFORMED OTHERWISE OR WHERE LOCAL CODES OR ORDINANCES TAKE PRECEDENCE.
- THE SUBCONTRACTOR SHALL PROVIDE A FULL SET OF CONSTRUCTION DOCUMENTS AT THE SITE, UPDATED WITH THE LATEST REVISIONS AND ADDENDUMS OR CLARIFICATIONS, AVAILABLE FOR THE USE BY ALL PERSONNEL INVOLVED WITH THE PROJECT.
- THE SUBCONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE SUBCONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- 10. THE SUBCONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS WHICH MAY BE REQUIRED FOR THE WORK BY THE ARCHITECT/ENGINEERING, THE STATE, COUNTY OR LOCAL GOVERNMENT AUTHORITY
- 11. THE SUBCONTRACTOR SHALL MAKE NECESSARY PROVISIONS TO PROTECT EXISTING IMPROVEMENTS, EASEMENTS, PAVEMENTS, CURBING, ETC. DURING CONSTRUCTION. UPON COMPLETION OF WORK, THE SUBCONTRACTOR SHALL REPAIR ANY DAMAGE THE MAY HAVE OCCURRED DUE TO CONSTRUCTION ON OR ABOUT THE PROPERTY.
- 12. THE SUBCONTRACTOR SHALL MAINTAIN THE GENERAL WORK AREA AS CLEAN AND HAZARD FREE DURING CONSTRUCTION AND DISPOSE OF ALL DIRT, DEBRIS, RUBBISH AND REMOVE EQUIPMENT NOT SPECIFIED AS REMAINING ON THE PROPERTY. PREMISES SHALL BE LEFT IN CLEAN CONDITION AND FREE FROM PAINT SPOTS, DUST OR SMUDGES OF ANY NATURE.
- 13. THE SUBCONTRACTOR SHALL COMPLY WITH ALL OSHA REQUIREMENTS AS THEY APPLY TO THIS PROJECT.
- 14. THE SUBCONTRACTOR SHALL NOTIFY THE AT&T REPRESENTATIVE (B&T ENGINEERING) WHERE A CONFLICT OCCURS ON ANY OF THE CONTRACT DOCUMENTS. THE SUBCONTRACTOR IS NOT TO ORDER MATERIAL OR CONSTRUCT ANY PORTION OF THE WORK THAT IS IN CONFLICT UNTIL CONFLICT IS RESOLVED BY THE AT&T REPRESENTATIVE (B&T ENGINEERING).
- 15. THE SUBCONTRACTOR SHALL VERIFY ALL DIMENSIONS, ELEVATIONS, PROPERTY LINES, ETC. ON THE JOBS.

32'

8' 16'

(OR) 1/16"=1'-0" (22x34)

	EXISTING SPRINT ANTENNAS	(TYP. OF 1 PER ALPHA & BETA SECTORS, 2 TOTAL)	EXISTING AT&T 700 RRH (FLEXI RRH 4T4R B14 BE REMOVED (TYP. OF 1 PER SECTOR, 3 TOTAL)
	EXISTING MW AND YAGI ANTENNA	EXISTING AT&T ANTENNA (OPA-65R-LCUU-H4) TO REMAIN (TYP. OF 1 PER ALPHA & BETA SECTORS, 2 TOTAL)	- EXISTING AT&T 1900 RRH (B25 RRH4X30-4R R
TIP OF (E) AT&T ANTENNA	EXISTING SPRINT ANTENNA (TYP.)		Existing AT&T 2100 RRH (B66A RRH4X45-4R R
$\Psi ELEV. = 146'-0"\pm (AGL)$	- EXISTING PENTHOUSE		EXISTING AT&T ANTENNA (742264) TO REMAIN
			(TYP. OF 1 PER SECTOR, 3 TOTAL)
$\Psi ELEV. = 144'-0"\pm (AGL)$			OF 3 PER SEC
BETA SECTOR ELEV. = 143'-0"± (AGL)		EXISTING AT&T FILTER TO REMAIN (TYP. OF 1 PER BETA SECTOR, 1 TOTAL)	
€ OF (E) AT&T ANTENNAS FOR ALPHA SECTOR			BE REMOVED
Ψ ELEV. = 142'-0"± (AGL)			EXISTING AT&T (TYP. OF 2 PE
€ OF (E) AT&T ANTENNAS FOR GAMMA SECTOR			
· ELEV. = 140 −0 ± (AGL)			
$\oint \frac{10P \text{ OF (E) ROOF}}{\text{ELEV.} = 133'-6'' \pm (AGL)}$			
			(E) (12) 1-5/
			(E) (3) RET C (E) (15) 1/4
			To be remove
$\Phi_{\text{ELEV.= 0'-0"}}^{\text{(E) GRADE}}$			┲╪╪╪╪╪╪╪ ┲╪╪╤╤╤╤╪╋
EXISTING TOWER ELEVATION-IN		EXISTING AT&T ANTENNA (NNH4-65C-R6)-	± d
		(TYP. OF 1 PER ALPHA & BETA SECTORS, 2 TOTAL) EXISTING AT&T ANTENNA (OPA-65R-LCUU-H4)	(TYP. OF 1 PER SECTOR, 3 TOTA NEW AT&T WCS RRH (AIRSCALE R
$\begin{array}{c} \bullet \\ \bullet $	EXISTING MW AND YAGI ANTENNA EXISTING SPRINT ANTENNA (TYP.)	(TYP. OF 1 PER ALPHA & BETA SECTORS, 2 TOTAL)	(TYP. OF 1 PER ALPHA & BETA 3 NEW AT&T 1900 RRH (ARSCALE 320W AUEID) (TYP. OF 1 DEP PE
TIP OF (E) AT&T ANTENNA ELEV. = 146'-0"± (AGL)	EXISTING SPRINT ANTENNAS (TYP.) EXISTING T-MOBILE ANTENNA		NEW AT&T DC9-48-60-24-8C-6
TIP OF (E) AT&T ANTENNA ELEV. = 144'-2"± (AGL)			(TYP. OF T PER SECTOR, 3 TOTA
TIP OF (E) AT&T ANTENNA ELEV. = 144'-0"± (AGL)			NEW ATAT ANTEN
€ OF (E) AT&T ANTENNAS FOR BETA SECTOR		(TYP. OF 1 PER BETA SECTOR, 1 TOTAL)	(TYP. OF 2 PER EXISTING AT&T T
$\Psi ELEV. = 143'-0"\pm (AGL)$		Image: New At&t 700 RRH (AIRSCALE DUAL RRH 4T4R III) Image: New At&t 700 RRH (AIRSCALE DUAL RRH 4T4R III) Image: New At&t 700 RRH (AIRSCALE DUAL RRH 4T4R III) Image: New At&t 700 RRH (AIRSCALE DUAL RRH 4T4R III) Image: New At&t 700 RRH (AIRSCALE DUAL RRH 4T4R III) Image: New At&t 700 RRH (AIRSCALE DUAL RRH 4T4R III) Image: New At&t 700 RRH (AIRSCALE DUAL RRH 4T4R III) Image: New At&t 700 RRH (AIRSCALE DUAL RRH 4T4R III) Image: New At&t 700 RRH (AIRSCALE DUAL RRH 4T4R III) Image: New At&t 700 RRH (AIRSCALE DUAL RRH 4T4R III)	
↓ ALPHA SECTOR ELEV. = 142'-0"± (AGL)		(TYP. OF 1 PER BETA SECTOR, 1 TOTAL)	Attack west west west west west west west west
€ OF (E) & (N) AT&T		B12/14 320W AHLBA) ON (N) D21 BRACKET MOUNT (TYP. OF 1 PER ALPHA SECTOR, 1 TOTAL)	2 PER GAMMA S
$\begin{array}{c} \bullet \\ \bullet $		NEW AT&T 1900 RRH (AIRSCALE DUAL RRH 4T4R - B25/66 320W AHFIB) ON (N) D21 BRACKET MOUNT	
+ TOP OF (E) ROOF ELEV = 133'-6"+ (ACL)		(TYP. OF 1 PER ALPHA SECTOR, 1 TOTAL)	NEW AT&T 1900 B25/66 320W A
		^	(TYP. OF 2 PER
			EXISTING 133'
			(E) (12) 1-5/ (E) (3) RET C
			(N) (3) RFFT-
(E) GRADE			
'			
PROPOSED TOWER ELEVATION	-NORTH		

(OR) 1/16"=1'-0" (22x34)

NEW AT&T 1900 RRH (AIRSCALE DUAL RRH 4T4R (TYP. OF 1 PER BETA SECTOR, 1 TOTAL)

-NEW AT&T 700 RRH (AIRSCALE DUAL RRH 4T4R B12/14 320W AHLBA) (TYP. OF 1 PER BETA SECTOR, 1 TOTAL)

				II C-
		SCALE: 1/4"=1'-0" (11x17)	4	
2'	4'	(OR) 1/2"=1'-0" (22x34)		

						PROPOSE	D ANTENNA SCHEDULE		
SECTOR	ANTENNA POSITION	ANTENNA MAKE/MODEL	RAD CENTER	AZIMUTH	M-TILT	E-TILT	RRH MAKE/MODEL	TMA/FILTER	FEED
	#1	(E) KATHREIN 742264	142'-0"	0.	0.	2./2.	_	(E) (2) LGP12104	(E) (4) 1- (E) (1) F
	#2	(E) COMMSCOPE NNH4-65C-R6	142'–0"	0.	0.	5°/2°/2° /2°/5°	(N) (1) AIRSCALE DUAL RRH 4T4R B12/14 320W AHLBA (N) (1) AIRSCALE DUAL RRH 4T4R B25/66 320W AHFIB	_	(N) (3) PWRT TRUI (N) (1) RFFT FIBER
ALPHA	#3	-	-	-	-	-	_	-	-
	#4	(E) CCL OPA-65R-LCUU-H4	142'-0"	0.	0.	5'	(N) (1) AIRSCALE RRH 4T4R B30 100W AHNA	_	SHARED F
	#1	(E) CCL OPA-65R-LCUU-H4	143'-0"	150	0.	6*	(N) (1) AIRSCALE RRH 4T4R B30 100W AHNA	(E) (1) KFTDR00110030	SHARED F
BETA	#2	(E) COMMSCOPE NNH4-65C-R6	143'-0"	110	0.	12°/5°/5° /5°/10°	(N) (1) AIRSCALE DUAL RRH 4T4R B12/14 320W AHLBA (N) (1) AIRSCALE DUAL RRH 4T4R B25/66 320W AHFIB	_	(N) (3) PWRT TRUI (N) (1) RFFT FIBER
	# 3	-	-	_	_	-	-	_	-
	#4	(E) KATHREIN 742264	143'-0"	110	0.	2./2.	-	(E) (2) LGP12104	(E) (4) 1- (E) (1) F
	#1	(E) KATHREIN 742264	140'-0"	270 '	2*	2./2.	_	(E) (2) LGP12104	(E) (4) 1- (E) (1) F
GAMMA	#2	(N) CCL BSA-M65R-BUU-H6	140'-0"	260*	0.	6'/6'/6'/6' /4'/4'/4'/4' /4'/4'	(N) (2) AIRSCALE DUAL RRH 4T4R B12/14 320W AHLBA (N) (2) AIRSCALE DUAL RRH 4T4R B25/66 320W AHFIB	_	(N) (3) PWRT TRUI (N) (1) RFFT FIBER
	# 3	(N) CCL BSA-M65R-BUU-H6	140'-0"	260'	0.	2*/2*	(N) (2) AIRSCALE RRH 4T4R B30 100W AHNA	_	SHARED F

					AT&	Г
				sr	nartlir	nk
		1			Trylo	n
			DRA	WING SCALES PF	ARE INTENDED FOR 11"x1 RINTED MEDIA ONLY.	7" SIZE
LINE	FEEDLINE LENGTH			ç	SUBMITTALS	
5/8" COAX	1.30'-0"		REV	DATE	DESCRIPTION	BY
LI COAX	130 -0		A	12/11/19	90% CD	SAR
NKS	130'-0"			01/14/20	90% CD	GOP
-485M-001 TRUNK				01/21/20	90% CD	PTN
. –	_		0	02/11/20	100% CD	SAR
	170' 0"		1	03/19/20	100% CD	SAR
	130 -0					
TIBER/DC	130'–0"					
-606-S DC NKS -48SM-001 IRUNK	130'-0"			AND COR	A RYLAND	
-	-			OFFESS	QNAL ER	
5/8" COAX RET COAX	130'–0"			3-1	9-2020	
5/8" COAX RET COAX	130'-0"					
-606-S DC NKS -48SM-001 TRUNK	130'-0"		"I CEF OR AI ENGINE LICEN:	TIFY THAT THE PROVED BY N ER UNDER TH SE NUMBER 2	ESE DOCUMENTS WERE PRE HE AND THAT I AM A DULY E LAWS OF THE STATE OF 7217, EXPIRATION DATE 3/3	PARED BY LICENSED MARYLAND, 26/2020."
TIBER/DC	130'-0"			PR	DJECT TITLE	
				US FA#:	ID: 100205 : 10128448	
				.11 .	GILL	
			9 ⁻ S	727 MO ILVER S	UNT PISGAH R PRING, MD 20	OAD 903
				EXIS	TING BUILDING	
				SHEET	DESCRIPTION	1
				ANTE	NNA SCHEDU	LE
			$ \geq$		SHEET NO.	\equiv
					C-5	
	N	. <u></u> 1				

DC12 DETAIL

SIZE AND WEIGHT TABLE

BATTERY CABINET	WIDTH	DEPTH	HEIGHT	WEIGHT
NETXTEND OUTDOOR BATTERY CABINET	36"	37"	72"	980 LBS.

CLEARANCE

CLEARANCE	FRONT	REAR	SIDES
NETXTEND OUTDOOR BATTERY CABINET	36"	6"	2"

SBS-170F Battery Features and Benefits:

- Proven Long Service
- High energy density
- Up to two year shelf life
- · Very low ventilation requirement
- Wide operating temperature range: -40°F (-40°C) to 122°F (50°C)

EnerSys PowerSafe SBS-170F Battery Specifications:

Chemistry:	Sealed Lead Acid
Voltage:	12 volts
Nominal Capacity:	170.0Ah
Terminals:	M6
Dimensions (L \times W \times H):	22.10 × 4.90 × 11.1
Weight (pounds):	115.7

"I CERTIFY THAT THESE DOCUMENTS WERE PREPARED BY OR APPROVED BY ME AND THAT I AM A DULY LICENSED ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND, LICENSE NUMBER 27217, EXPIRATION DATE 3/26/2020."

PROJECT TITLE

USID: 100205 FA#: 10128448

GILL

9727 MOUNT PISGAH ROAD SILVER SPRING, MD 20903

EXISTING BUILDING

SHEET DESCRIPTION

EQUIPMENT DETAILS

SHEET NO.

C - 8

2

N.T.S.

10

2ND SQUID INSTALLED WILL BE ALARMED TO THE LOWEST BAND (OR FIRST INSTALLED) RRH ON BETA SECTOR.

3RD SQUID INSTALLED WILL BE ALARMED TO THE LOWEST BAND (OR FIRST INSTALLED) RRH ON GAMMA SECTOR.

AN RRH WILL NEVER HAVE MORE THAN ONE SQUID ALARMED ON IT.
 SQUID ALARMS ARE NOT TO BE DAISY CHAINED.

2 = LC CONNECTOR

STRIKESORB PROTECTION $\langle 1 \rangle =$ MODULE BY RAYCAP

$\begin{pmatrix} 1 \end{pmatrix}$	RAYCAP	DC9-48-60-24-8C-EV
(E-1)	SCALE: N.T.	S

Smartlink

DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY.

	Ś	SUBMITTALS	
REV	DATE	DESCRIPTION	BY
A	12/11/19	90% CD	SAR
в	12/26/19	90% CD	KSN
с	01/14/20	90% CD	GOP
D	01/21/20	90% CD	PTN
0	02/11/20	100% CD	SAR
1	03/19/20	100% CD	SAR

3-19-2020

"I CERTIFY THAT THESE DOCUMENTS WERE PREPARED BY OR APPROVED BY ME AND THAT I AM A DULY LICENSED ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND, LICENSE NUMBER 27217, EXPIRATION DATE 3/26/2020."

PROJECT TITLE

USID: 100205 FA#: 10128448

GILL

9727 MOUNT PISGAH ROAD SILVER SPRING, MD 20903

EXISTING BUILDING

SHEET DESCRIPTION

DC SURGE SUPPRESSION WIRING DIAGRAM

SHEET NO.

E-1

			P	ANEL	'DI STR	BUTION	PANEL	SCHEI	DULE				
												Square D #QO	
	120/240V, 1 PHASE, 3W											200A MAIN BKR	
	200A BUS												
	MAI	N BREAK	KER	RATIN	IG (A) :	20	00	SYSTE	EM VO	LTA	GE (V) :	240	
Туре	DESCRIPTION	VA	c/nc	BKR	POSN	L1	L2	POSN	BKR	c/nc	VA	DESCRIPTION	Тур
dual	UMTS CABINET	4875	nc	100	1	6892		2	30	С	2017	RECT 4	dua
		4875	nc		3		6892	4		С	2017		
dual	FLEX CABINET	1455	nc	100	5	3472		6	30	С	2017	RECT 5	dua
		1275	nc		7		3292	8		с	2017		
dual	UNLABELED	0	nc	20	9	0		10	30	С	0	RECT 6	dua
		0	nc		11		0	12		С	0		
dual	RECT 1	2017	С	30	13	2017		14	30	с	0	RECT 7	dua
		2017	С		15		2017	16		С	0		
dual	RECT 2	2017	С	30	17	2017		18	30	С	0	RECT 8	dua
		2017	С		19		2017	20		С	0		
dual	RECT 3	2017	С	30	21	2017		22	30	С	0	RECT 9	dua
		2017	С		23		2017	24		С	0		
	BLANK				25	1175		26	30	nc	1175	LUCENT AC	dua
	BLANK				27		0	28				BLANK	
	BLANK				29	0		30				BLANK	
	BLANK				31		0	32				BLANK	
	BLANK				33	0		34				BLANK	
	BLANK				35		0	36				BLANK	
	BLANK				37	0		38				BLANK	
	BLANK				39		0	40				BLANK	
	NOT PRESENT				41	0		42				NOT PRESENT	
		PHAS	ETC	TALS	(VA):	17590	16235						
	С	URRENT	PER	R PHA	SE (A):	168	156	Amper	es/pha	se c	annot ex	ceed main breaker rating	
		PAN	EL 1	TOTAL	(VA):	338	325	Lege	nd: c =	= co	ntinuous	nc = non-continuous	
		PANEL	CAP	ACITY	(kVA):	48.0	CC	ONNECT	ED LO	DAD	(kVA):	33.8	
	PANEL LOADING (1	00% non-	-cont	load)	(kVA):	13.7							
	PANEL LOADING (12)	5% contin	nuou	s load)	(kVA):	25.2							
	PANEL	LOADIN	G (T	OTAL	(kVA):	38.9							
		SPARE	CAP	ACITY	(kVA):	9.1							

												Square D #QO	
	120/240V, 1 PHASE, 3W												
	144			DATIN	IC (A) .	4.0	10	OVOT	MNO	1 7 4	00.00.	240	
T	DECODIDITION		LEK	RAII	VG (A) .	1.4	10	DOON		LIA	GE(V).		т.,,
Type	DESCRIPTION	200	c/nc	BKK	PUSN	200	LZ	PUSN	BKR	c/nc	VA	DESCRIPTION	Тур
single	LIGHTS	360	nc	10	1	300	400	2	20	nc	0	ODADE	sing
single	GFCI	180	nc	20	3	1005	180	4	20	nc	0	SPARE	dua
dual	AC 1	1095	nc	10	5	1095	1005	6		nc	0	DI ANU	
	DI ANIK	1095	nc		/	0	1095	8				BLANK	
	BLANK	_			9	0	-	10				BLANK	
	BLANK				11	~	0	12				BLANK	
	BLANK				13	0		14				BLANK	
	BLANK				15		0	16				BLANK	
	NOT PRESENT				17	0		18				NOT PRESENT	
	NOT PRESENT				19		0	20				NOT PRESENT	
	NOT PRESENT				21	0		22				NOT PRESENT	
	NOT PRESENT				23		0	24				NOT PRESENT	
	NOT PRESENT				25	0		26				NOT PRESENT	
	NOT PRESENT				27		0	28				NOT PRESENT	
	NOT PRESENT				29	0		30				NOT PRESENT	
	NOT PRESENT				31		0	32				NOT PRESENT	
	NOT PRESENT				33	0		34				NOT PRESENT	
	NOT PRESENT				35		0	36				NOT PRESENT	
	NOT PRESENT				37	0		38				NOT PRESENT	
	NOT PRESENT				39		0	40				NOT PRESENT	
	NOT PRESENT				41	0		42				NOT PRESENT	
		PHAS	ETO	TALS	(VA):	1455	1275						
	0	URRENT	PER	R PHA	SE (A):	12	11	Ampere	es/pha	se c	annot ex	ceed main breaker rating	
		PAN	IFI 1	TOTAL	(VA)	27	30	Lege	nd c	= co	ntinuous	nc = non-continuous	
		PANEL	CAP	ACITY	(kVA)	24.0	CC	ONNECT	ED L	DAD	(kVA);	2.7	
	PANEL LOADING (1	00% non-	-cont	t. load) (kVA)	2.7						22201	
	PANEL LOADING (12	5% contin	1001	s load	(kVA)	0.0							
	PANE		GIT	OTAL	(kVA)	27							
		SPARE	CAP	ACITY	(kVA)	21.3							
									1				

EXISTING AC MAIN PANEL SCHEDULE SCALE: NTS

					ULE	SCHEE	PANEL'	BUTION	DISTR	ANEL	P			
	Square D #QO													
	200A MAIN BKR												120/240V, 1 PHASE, 3W	
													200A BUS	
	240	1	GE (V) :	LTA	M VO	SYSTE	0	20	IG (A) :	RATIN	KER	BREAK	MAIN	
Ty	DESCRIPTION		VA	c/nc	BKR	POSN	L2	L1	POSN	BKR	c/nc	VA	DESCRIPTION	Type
du	RECT 4		2017	с	30	2		6892	1	100	nc	4875	UMTS CABINET	dual
			2017	С		4	6892		3		nc	4875		
du	RECT 5		2017	С	30	6		3292	5	100	nc	1275	FLEX CABINET	dual
			2017	с		8	3472		7		nc	1455	1	
du	RECT 6		2017	с	30	10		2017	9	20	nc	0	UNLABELED	dual
			2017	С		12	2017		11		nc	0		
du	RECT 7		0	С	30	14		2017	13	30	С	2017	RECT 1	dual
		1	0	с		16	2017		15		С	2017		
du	RECT 8		0	с	30	18		2017	17	30	с	2017	RECT 2	dual
			0	с		20	2017		19		С	2017		
du	RECT 9		0	с	30	22		2017	21	30	С	2017	RECT 3	dual
			0	С		24	2017		23		С	2017		
du	LUCENT AC		1175	nc	30	26		1175	25				BLANK	
sin	BATT CAB GFCI		180	nc	20	28	180		27				BLANK	
sin	BATT CAB HEAT		540	nc	15	30		540	29				BLANK	
	BLANK					32	0		31				BLANK	
	BLANK					34		0	33				BLANK	
	BLANK					36	0		35				BLANK	
	BLANK					38		0	37				BLANK	
	BLANK					40	0		39				BLANK	
	NOT PRESENT					42		0	41				NOT PRESENT	
							18612	19967	(VA):	TALS	ETC	PHAS		
	ceed main breaker rating	xce	annot ex	se c	s/pha	Ampere	180	192	SE (A):	R PHA	PEF	IRRENT	CL	
	nc = non-continuous	s.	ntinuous	= co	nd: c =	Lege	79	385	(VA);	OTAL	EL 1	PAN		
	38.6	3	(kVA):)AD	ED LO	NNECT	CC	48.0	(kVA):	ACITY	CAP	PANEL		
								14.4	(kVA):	load	cont	0% non-	PANEL LOADING (10	
								30.3	(kVA):	s load	uou	% contin	PANEL LOADING (125	
		1						44.6	(kVA):	OTAL	G (T	LOADIN	PANEL	
								3.4	(kVA):	ACITY	CAP	SPARE		
		1						3.4	(KVA):		ĺ	JAP.	SPARE CAP	SPARE UAP

	Square D #QO													
													120/240V, 1 PHASE, 3W	
	240):	GE (V)	LTA	MVO	SYSTE	0	10	IG (A) :	RATIN	E R	N BREAK	IAM	
Тур	DESCRIPTION		VA	d/nc	BKR	POSN	L2	L1	POSN	BKR	c/nc	VA	DESCRIPTION	Туре
sing	CONVERTER		0	nc	20	2		360	1	10	nc	360	LIGHTS	single
dua	SPARE		0	nc	20	4	180		3	20	nc	180	GFCI	single
			0	nc		6		1095	5	10	nc	1095	AC 1	dual
	BLANK					8	1095		7		nc	1095		
	BLANK					10		0	9				BLANK	
	BLANK					12	0		11				BLANK	
	BLANK					14		0	13				BLANK	
	BLANK					16	0		15				BLANK	
	NOT PRESENT					18		0	17				NOT PRESENT	
	NOT PRESENT					20	0		19				NOT PRESENT	
	NOT PRESENT					22		0	21				NOT PRESENT	
	NOT PRESENT					24	0		23				NOT PRESENT	
	NOT PRESENT					26		0	25				NOT PRESENT	
	NOT PRESENT					28	0		27				NOT PRESENT	
	NOT PRESENT					30		0	29				NOT PRESENT	
	NOT PRESENT					32	0		31				NOT PRESENT	
	NOT PRESENT					34		0	33				NOT PRESENT	
	NOT PRESENT					36	0		35				NOT PRESENT	
	NOT PRESENT					38		0	37				NOT PRESENT	
	NOT PRESENT					40	0		39				NOT PRESENT	
	NOT PRESENT					42		0	41				NOT PRESENT	
							1275	1455	(VA):	DTALS	ETO	PHAS		
	ceed main breaker rating	exc	annot e	se c	s/pha	Ampere	11	12	SE (A):	R PHA	PER	JRRENT	CL	
	, nc = non-continuous	us,	ntinuous	= <u>co</u> i	nd: c =	Lege	80	27	(VA):	TOTAL	IEL 1	PAN		
	2.7): 2	(kVA):	DAD	ED LC	NNECT	CC	24.0	(kVA):	ACITY	CAP	PANEL		
								2.7	(kVA):	t. load)	cont	0% non-	PANEL LOADING (10	
								0.0	(kVA):	s load)	nuou	% contir	PANEL LOADING (125	
								2.7	(kVA):	OTAL)	G (T	LOADIN	PANEL	
								21.3	(kVA):	ACITY	CAP	SPARE		

3 E-3 SCALE: NTS

2 E-3 EXISTING AC SUB PANEL SCHEDULE SCALE: NTS

DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY.

SUBMITTALS							
REV	DATE	BY					
A	12/11/19	90% CD	SAR				
в	12/26/19	90% CD	KSN				
с	01/14/20	90% CD	GOP				
D	01/21/20	90% CD	PTN				
0	02/11/20	100% CD	SAR				
1	03/19/20	100% CD	SAR				

"I CERTIFY THAT THESE DOCUMENTS WERE PREPARED BY OR APPROVED BY ME AND THAT I AM A DULY LICENSED ENGINEER THOUBER THE LAWS OF THE STATE OF MARYLAND, LICENSE NUMBER 27217, EXPIRATION DATE 3/26/2020."

PROJECT TITLE

USID: 100205 FA#: 10128448

GILL

9727 MOUNT PISGAH ROAD SILVER SPRING, MD 20903

EXISTING BUILDING

SHEET DESCRIPTION

AC PANEL SCHEDULE

SHEET NO.

E-3

NOTES:

1. SWITCH OFF EXISTING DC BREAKERS AFTER RRHs HAVE BEEN DECOMMISSIONED, RELABEL AS "SPARE".

TIER 1 (LOWER) VOLTAGE: -48V MAX. TIER BUS CURRENT: 600A

POSITION	DESCRIPTION	BRKR (A)
1	(E) SPARE	15
2	(E) SPARE	15
3	(E) SPARE	15
4	(E) SPARE	15
5	(E) SPARE	15
6	(E) SPARE	15
7	(E) NOKIA FSM4 BBU	20
8		
9	(E) SPARE	25
10	(E) SPARE	25
11	(E) SPARE	25
12		

POSITION	DESCRIPTION	BRKR (A)
13	(N) B12/14 RRH, SECTOR A	50
14	(N) B12/14 RRH, SECTOR B	50
15	(N) B12/14 RRH, SECTOR C	50
16	(N) B25/66 RRH, SECTOR A	50
17	(N) B25/66 RRH, SECTOR B	50
18	(N) B25/66 RRH, SECTOR C	50
19	(N) B30 RRH, SECTOR A	25
20	(N) B30 RRH, SECTOR B	25
21	(N) B30 RRH, SECTOR C	25
22		
23		
24		

TIER 2 VOLTAGE: -48V

MAX. TIER BUS CURRENT: 600A

REMOVE UNUSED BREAKERS, INSTALL NEW CIRCUIT BREAKERS FOR NEW RRHs AS SHOWN

NOTES:

BELOW.

1.

TIER 3 (OPTIONAL - NOTE: 4) VOLTAGE: -48V MAX. TIER BUS CURRENT: 600A

DESCRIPTION	BRKR (A)	POSITION	
(E) GSM	80A	37	
		38	
		39	
		40	
		41	
		42	
		43	
		44	
		45	
		46	
		47	
		48	

DC BREAKER	ALPHA	AT&T
SIZE	PART [#]	NEQ #
1A/1P	Unavailable	Not Applicable
3A/1P	470-301-10	NEQ 10356
5A/1P	470-302-10	NEQ 10357
10A/1P	470-303-10	NEQ 10358
15A/1P	470-304-10	NEQ 10359
16A/1P	Unavailable	Not Applicable
20A/1P	470-305-10	NEQ 10360
25A/1P	470-306-10	NEQ 10361
30A/1P	470-307-10	NEQ 10362
35A/1P	Unavailable	Not Applicable
40A/1P	470-309-10	NEQ 10364
45A/1P	Unavailable	Not Applicable
50A/1P	470-311-10	NEQ 10366
60A/1P	470-312-10	NEQ 10367
70A/1P	Unavailable	Not Applicable
75A/1P	Unavailable	Not Applicable
80A/1P	470-314-10	NEQ 10369
90A/1P	Unavailable	Not Applicable
100A/1P	470-316-10	NEQ 10371
100A/2P	Unavailable	Not Applicable
125A/2P	Unavailable	Not Applicable
150A/2P	747-148-20-000	NEQ 10373
200A/3P	Unavailable	Not Applicable
225A/3P	Unavailable	Not Applicable
250A/3P	747-221-20-000	NEQ 10377

ARGUS DC CIRCUIT BREAKER PART AND NEQ DATA

DC PANEL SCHEDULE E-4 SCALE: N.T.S

34 35 36

POSITION

25

26 27

28 29

30

31

32

33

NOTES:

- 1. ALL BREAKERS 100A AND LARGER REQUIRE ONE (1) UNUSED POSITION ON EACH SIDE.
- 2. 2-POSITION AND 3-POSITION BREAKERS REQUIRE AN ADAPTOR PLATE ON LOAD TERMINALS.
- 3. INSTALL LARGER BREAKERS ON UPPER TIERS TO FACILITATE CABLE MANAGEMENT.
- 4. THIS DETAIL IS APPLICABLE FOR ALPHA 48/24V DUAL VOLTAGE POWER SYSTEMS 4-TIER MODEL (NEQ. 15239) AND 3-TIER MODEL (NEQ. 15240).
- 5. BREAKERS SHALL BE AM-TYPE, 80V 10KA SCCR, MAXIMUM RATING IS 250A. BREAKERS 1A TO 100A ARE 1-POSN, 110A TO 150A ARE 2-POSN AND 175A TO 250A ARE 3-POSN.
- 6. GMT FUSE RATINGS ARE 0.5A TO 15A.

E-4

TIER 4 (UPPER) VOLTAGE: -48V

DESCRIPTION	BRKR (A)

NOTES:

FURNISHED BY OEM/AT&T. INSTALLED BY OEM OR AS SCOPED BY MARKET.

FURNISHED BY GC.

INSTALLED BY GC.

FINAL CONNECTION BY OEM OR AS SCOPED BY MARKET. 5.

DELETED.

DELETED

PART OF CONVERTER WITH 18 BREAKER POSITIONS. BREAKERS SPECIFIED SEPARATELY. BREAKERS TO BE TAGGED AND LOCKED OUT. 8

- 10. SIAD IS FURNISHED AND INSTALLED BY OTHERS AND INCLUDES POWER CONNECTIONS AND FIBER TO THE UNIT OR AS SCOPED BY MARKET. WHEN IN THE GENERAL CONTRACTOR'S SCOPE, INSTALL 10 AWG CHASSIS GROUND, PROVIDE (2) 10A BREAKERS FROM A 24V DC POWER SOURCE OR (2) 5A BREAKERS FROM A 48V DC POWER SOURCE AND CONNECT USING MFR POWER CABLE WITH SPECIAL CONNECTOR. 11. LEC TO FURNISH AND INSTALL NETWORK INTERFACE DEVICE.

12. COIL EXTRA LENGTH OF FIBER CABLE(S) WITHIN FIBER MANAGEMENT TRAY INSTALLED IN LTE FRAME.

13. MAXIMUM LENGTH OF SIZE 12 AWG DC POWER CABLE TO RRH SHALL NOT EXCEED 100 FEET. 14. SINGLE-CONDUCTOR DC POWER CABLES SHALL BE TELCOFLEX® OR KS24194[™], COPPER, UL LISTED RHH NON-HALOGEN, LOW SMOKE WITH BRAIDED COVER, TYPE TC (1/0 AND LARGER). UNLESS OTHERWISE NOTED, STRANDING SHALL BE CLASS B (TYPE III) FOR CABLES SIZES 14, 12 & 10 AWG AND CLASS I (TYPE IV) FOR SIZES 8 AWG AND LARGER. CABLES SHALL BE COLOR CODED RED FOR +24V, BLUE FOR -48V AND GRAY FOR 24V AND 48V RETURN CONDUCTORS. MULTI-CONDUCTOR DC POWER CABLES SHALL BE COPPER, CLASS B STRANDING WITH FLAME RETARDANT PVC JACKET, TYPE TC, UL LISTED FOR 90°C DRY/ 75°C WET INSTALLATION.

15. GROUNDING WIRES SHALL BE COPPER, GREEN THHN/THWN UL LISTED FOR 90°C DRY/75°C WET INSTALLATION. MINIMUM SIZE IS 6 AWG UNLESS NOTED OTHERWISE.

16. RET CONTROL FROM THE RRH IS AN OPTIONAL METHOD OF CONNECTION. REFER TO RF DATA SHEET FOR APPLICABILITY. 17. DELETED.

18. PROVIDE GROUND WIRES FOR ENHANCED ALARM MODULE (eAM) WHEN EMPLOYED BY MARKET.

19. DELETED.

20. DELETED

21. TMAS MAY BE EITHER SINGLE UNITS (AS SHOWN) OR TWIN UNITS. 22. NOTED EQUIPMENT MAY BE COMMON TO LTE AND UMTS SYSTEMS. REFER TO UMTS SYSTEM DIAGRAM IF

APPLICABLE 23. EXISTING 700MHz BAND BBU IF MODEL 9926 (d2Uv3) MAY BE POWERED FROM A 10A BREAKER.

LTE SYSTEM DIAGRAM, TOWER SITE WITH INDOOR ALU BASEBAND AND RRHs @ GRADE LEVEL

DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY.

SUBMITTALS							
REV	DATE DESCRIPTION BY						
A	12/11/19	90% CD	SAR				
в	12/26/19	90% CD	KSN				
с	01/14/20	90% CD	GOP				
D	01/21/20	90% CD	PTN				
0	02/11/20	100% CD	SAR				
1	03/19/20	100% CD	SAR				
\Box							

3-19-2020

"I CERTIFY THAT THESE DOCUMENTS WERE PREPARED BY OR APPROVED BY ME AND THAT I AM A DULY LICENSED ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND LICENSE NUMBER 27217, EXPIRATION DATE 3/26/2020."

PROJECT TITLE

USID: 100205 FA#: 10128448

GILL

9727 MOUNT PISGAH ROAD SILVER SPRING, MD 20903

EXISTING BUILDING

SHEET DESCRIPTION

SYSTEM DIAGRAM

SHEET NO.

E-6

		SITE D	ATA INPUT WORKSHEET - IND	OOR SITE P	OWER EST	IMATE	TOOL				
STEP 1: ENTER QUANTITIES OF EQUIPMENT & DC OPERATING VOLTAGE:		N	VOTE: LOAD VALUES FOR ANY EQU	IPMENT CAN	BE USER SP	ECIFIED	ON THE POWER CONSUMPTION WORKSHEET -	USER CHA	NGES TO	DEFAU	LT LOAD VALUES ARE HIGHLIGHTED IN BRI
		QTY	RADIO HEADS - Outdoor	VOLTAG	E WATTS	QTY	LTE 40 & Multi-Std EQUIPMENT	VOLTAGE	WATTS	QT	ANCILLARY CELL SITE EQUIPMENT
8TEP 2: ENTER DC PLANT TYPE FROM DROP-DOWN MENU:			Erlocson		_	0	A-LU 9926 LTE BBU (wimax: 3 eCEM-u)	48	0	0	A-LU 7705 SIAD
("OENERIC" +24V or +48V DC FLANT CAN BE SELECTED FOR ANY MANUFACTURER'S DC FLANT)		0 RRU	S 01 82, 85 (80W)	48	0	1	Nokia FSM-4	48	998		(FUTURE)
GENERIC - ANY 48VDC PLANT		0 RRU	S 01 B12 (60W)	48	0		(FUTURE)			. 0	A-LU MPR-9500 MW Service Switch - MSS
45V PRIMARY DC PLANT \$PECIFIED		0 RRU	\$ 11 B12 (2x30W)	48	0		(FUTURE)	<u> </u>		0	A-Lu MPR-9500 MW Outdoor Unit - ODU
(DC PLANT CONFIGURATION GAN BE REVIEWED ON DC PLANT WORKSHEET)	Ⅱ⊢	0 RRU	S 11 B2, B4, B5, B12 (2x40W)	48	0		(FUTURE)	—	-	0	A-Lu MPR-9500 MW MPT-HL (Indoor)
THE TEP ONLY SHOWN IF "GENERIC" DC PLANT PLANT TYPE HAS BEEN SELECTED:	⊢	0 RRU	S 12 82, 84, 85 (2x50W)	48	0		(FUTURE)		-		(FUTURE)
SELECT - 20 CONVERTED COMPACT VIA: 50 - WARDALE BODTS: 11		0 KRU	6 32 82 (4840W) 6 33 836 (4x40W)	48	0	0	Encision LTE INBREGH BBU - 1 DUL	48	•		Cisco MWR-2941 SIAD
* ENTER 0 FOR \$4.01 VALUES TO BYPASS \$4.01 QUANTITY CHECK ON DO B ANT CONFIG WORKSHEET		A RRU	\$ 32 B66A	40	0	0	Ericsson W/COMA 88/5601 - 1 DUW	45			Gisco 15310 EOS (SONET) MUX
STEP 28: THIS STEP ONLY SHOWN IF TYCO OP22424 DC PLANT PLANT TYPE HAS BEEN SELECTED.		A RRU	S A2 B2, B4, B12	48	0	0	Ericsson LTE R8S6601 BBU - 1DUS	49	ů.	i L	Cisco 15454 MSP (MW Ring Config.)
STO 12. THE STEP ONLY SHOWN IF THE OFSTALL DE PERMIT PERMIT THE ARE BEEN SELECTED.		a RRU	SE2 829	48	0	0	Ericsson LTE R896601 BBU - 20US	40	0	I	(FUTURE)
	41 F	0 RRU	W 82, 85	48	0	0	Ericsson XMU	48	0	0	Tru-Position LMU (E911)
STEP 3: DO YOU WANT TO CONFIGURE A STANDARD STAND-ALONE DC CONVERTER SYSTEM? N	11 🖿	0 AR2	21 (60W)	48	0	0	Ericsson LTE R865216	48	0	0	DC Free Air (per HVAC unit)
NOTE: IF YOU SELECT "" ANY INTEGRATED DC PLANT CONVERTER OPTIONS WILL BE BYPASSED	11 🖿	0 RRU	S 4478 B14	48	0		(FUTURE)			0	GENERIC Ethemet NID
			(FUTURE)				(FUTURE)			0	GENERIC Hydrogen Detector
			A-LU				(FUTURE)			0	GENERIC RET Controller
		0 4x45	B66A	48	0		(FUTURE)			0	GENERIC RXAIT
	JI 🗆	e FDD	RRH2x40-07L (UHLA) 817	48	0		*		-	0	GENERIC Smoke Detector
		0 RRH	2x40-07L-AT (UHL8) B17	48	0	QTY	UMTS 3G EQUIPMENT	VOLTAGE	WATTS	0	GENERIC TMA System
STEP 4: ENTER INDOOR SITE BULDING/SHELTER DATA:	비ᄂ	0 825 8	RRH4x30 (UHFA) B25	48	0	0	A-LU MACRO NodeB (3S1C - 40W)	24	0	0	GENERIC Tower Lighting (DC)
(Square footage used for Interior AC lighting LOAD calculation)		0 825 6	RRH2x60 (UHFA) 825	48	0	0	A-LU MACRO NodeB (3S2C - 40W)	24	0	0	NG480
SELECT SITE BUILDING TYPE & SIZE: OTHER	11 🛏	0 2X60	W-850 B5	48	0	0	A-LU MACRO NodeB (3S3C - 40W)	24	0	0	Cisco 2911
SPECIFY TOTAL FLOOR SPACE (SQUARE FEET):		0 2X60	W-1900 82	48	0	0	A-LU MACRO NodeB (354C - 40W)	24	0		(FUTURE)
	비는	0 2060	W-1900A B2	48	0	0	A-LU MACHO NO0E8 (385C - 40W - 2 CAB)	24	0	!⊢	(FUTURE)
	11	0 RRH	2x40-07L-DE (UHLC) 829	48	0	0	A-LU MICRO NodeB	24	0	!⊢–	(FUTURE)
STEP 6: ENTER SITE HVAC STSTEM DATA:	41 F	0 RRH	4T4R (FRBI) 814	48	0	0	A-LU 9396 d2U Distributed Nodes MU	48	0	!⊢	(FUTURE)
SPECIFY NUMELINAL HVAC UNITSIZE (TONS): 0 SPECIFY QUANTITY: 0	⊢	0 RRH	4425 830	48	0	0	A-LU 9396 640 Distributed Nodes MU	48	0		(FUTURE)
DOES OF E HAVE ADDITIONAL HAVE (DEPENDENT SEE)	□ ⊢	_	(FOTORE)	_	-		(FUTURE)	 		OT	TY DE AMP/MCDA or SCDA) EODT
		OTY	RADIO HEAD2 - Indoor	MOI TAG	E WATTS		Edition RESIDE NodeE 351C - 1 CAR	24			Andrew (12 module more ERAME)
	ПĒ	411	Friescon	TWEITE	- moile	0	Edicson RES3205 NodeE 352C - 1 CAE	24			Andrew 135 Watt Module
TOTAL SPECIFICS STE HVAC: IN TONIC ESTIMATED HVAC REQUIREMENT: TWO 4-TON UNITS		A RRU	\$ 01 B2, B5 (80W)	43	0	Ň	NON-OBJE Erlosson and 4th & 6th Ca	rtier		I	(FUTURE)
AFFCIERD HVAC NOT ALFFCIENT		A RRU	S 01 B12 (60W)	48	0	0	Ericsson REG3206 NodeB 3630 - 2 CAB	24	0		Powerwave 12 module mcca FRAME)
		a RRU	\$ 11 B12 (2x30W)	48	0	0	Ericsson RBS3206 NodeB 3S4C - 2 CAB	24	0		Powerwave 90 Watt Module
		0 RRU	\$ 11 82, 84, 85, 812 (2x40W)	48	0	0	Ericsson RBS3205 NodeB 385C - 3 CAB	24	0		Powerwave 120 Watt Module
THIS TOOL DOES NOT APPLY TO SITES THAT ARE EQUIPPED WITH FREE STANDING DRECT AR COOLING		0 RRU	S 12 B2, B4, B5 (2x50W)	48	0	-	OBIF Ericsson 3rd, 4th & 5th Carri	or		0	Powerwave 180 Watt Module
		0 RRU	\$ 32 82 (4x40W)	48	0		Ericsson RBS3206 NodeB 3S3C - 1 CAB	24	0		(FUTURE)
	11	0 RRU	\$ 32 830 (4x25W)	48	0	0	(Select RRUS from left section)			0	CCI 125 Watt DAB SCPA Module
STEP 6: ENTER SITE STATIONARY GENERATOR DATA:	11 🖿	0 RRU	\$ 32 B66A	48	0		Ericsson RBG3206 NodeB 3S4C - 1 CAB	24	0	0	CCI 125 Watt DAC SCPA Module
DOES SITE HAVE A STATIONARY GENERATOR? N	11 🗖	0 RRU	S A2 82, 84, 812	48	0	•	(Select RRUS from left section)				(FUTURE)
ESTIMATED CAPACITY REQUIRED: 20 KW (NO SITE GENERATOR)		0 RRU	SE2 829	48	0		Ericsson RES3206 NodeE 3S4C - 1 CAE	24	0	(CUS	STOM DC LOADS DEFINED ON POWER CONSUMPT
		0 RRU	W 82, 85	48	0		(Select RRUS from left section)			QT	Y USER SPECIFIED DC EQUIPMENT
STEP 7: ENTER SITE BATTERY CONFIGURATION DATA:		0 AR2	21 (60W)	48	0		Ericsson RBS3206 NodeB 365C - 2 CAB	24	0	3	B14 Firstnet RRH
SELECT SINGLE STRING BATTERY CAPACITY (AH): 165		0 RRU	S 4478 B14	48	0	 .	(Select RRUS from left section)		_	1	9412 Heaters
SPECIFY TOTAL QUANTITY OF BATTERY STRINGS: 2	미ᄃ		(FUTURE)			0	Ericsson 3303 MICRO NodeB	24	0	0	825/66 Dual Band RRH
TOTAL SITE BATTERY CAPACITY (AH): 310	비ᄂ		A-LU			0	Ericsson RBS3418 Distributed NodeB MU	48	0	0	B12/14 Dual Band RRH
NOTE: STANDARD BATTERY CAPACITY HAS BEEN SPECIFIED	🗖	3 4x45	B66A	48	2112		(FUTURE)			0	
NOTE: 12 VOLT MONOBLOCK BATTERIES - 4 batteries per -48V String		3 FDD	RRH2x40-07L (UHLA) 817	48	888		(FUTURE)			0	
ESTIMATED BATTERY RESERVE TIME: 2.44 HOUR3 (NO SITE GENSET)		0 RRH	2x40-07L-AT (UHLB) B17	48	0		100 KTOM 401 OADO DEDINED ON DOMED CONCLEMENT	ONTRODUCT	erro.	ı Lê	
		3 825 1	RRH4X30 (UHFA) 825	48	1632	0.00	COSTOM AC ECADS DEPINED ON POWER CONSOMPTI	UNWORKSP	1010	•	
SITES WITH STATIONARY GENSETS SHALL BE ENGINEERED WITH A MAX OF 3 SHELVES OF 100 AH BATTERIES (3 shipes at sky or 5 shipes at sky or 5 shipes at sky or 10 shipes sites a MINIMUM OF 4 HOURS)	⊢	0 5251	NA-050 BC	48	0	QIT	USER SPECIFIED AC EQUIPMENT	VOLTAGE	RVA		
(3 starge at we we are starge at 244). The other of contrast minimum of 4 monto	⊢	0 2760	W-100 80	48	0	0		<u> </u>	0		
	41 🛏	0 2260	W-1900 82	40	0	0		I	0		
SITE FOWER CALCULATION FOOL - VERSION 4.3 - ORDOR 17, 2017 R. BADGERO		A RRH	2x40-071-OE (UHLC) 829	40	0	0		I	0		
ANT QUESTIONS PLEASE CONTACT NON BADGENO (RESS/UDATT-COM)		A RRH	4T4R (FRBI) 814	43	0	0		<u> </u>	, i	l L	
		a RRH	4X25 830	48	1248	0		 	0		
		-	(FUTURE)	_		0			0	11-	TOTAL USER SPE
			(FUTURE)	_		0			0	11	TOTAL +24V (27V) AM
	1-	_				0			0	11	TOTAL -48V (54V) AM
						0			0	- I	
							TOTAL USER SPEC	FIED KVA	: 0	1	
							TOTAL 120VAC AMP8: 0	1		-	
							TOTAL 240VAC AMP8: 4882				
						-			-		
				-48V	PRMARY VO	LTAGE	DC PLANT SPECIFIED		4		ESTIMATED SITE MAX, AC LOAD (AM
			+24VDC EQ	PMENT LOA	D: 0	WATTS	= 0 AMP3 at +24V		1		ESTMATE 200A SERVICE SUFF
			-48VDC EQU	JPMENT LOA	D: 8888	WATTS	= 184 AMP3 at -48V		+		
	1		NO 8	ECONDARY	AV LOADS -	DCCON	IVERTER SYSTEM NOT REQUIRED		4	<u> </u>	SITE GENERATOR CAPACITY RECUR
	1		TOTAL PRIM	ART 48V LOA	U: 9888	WATTS	- 184 AMP3 at 48V		L	<u> </u>	ON SITE GENERATOR CAPACI
	1		10.0 01	ANT COMPTON	DATION	0000	ADVICE ON DO DI ANT MODIVILLET		т		(NO ON-SITE GENERATOR
	1		(DC PL	CONFISE	INVOO PLAN	T DE RE	ACHED ON DO FLANT WORKSHEET)	_	+	<u> </u>	DECOMMENSES INVA AVAI
	1		DU PLANT: GEN	CTIERP PT	OURED AL		1		+	<u> </u>	SPECIFIED SITE TOTAL HUAD CARAG
				ARY REC	TIFER SLOT	8 44	-		1		ESTIMATE EXISTING HVAC NOT SI
	1		CONVITYPE: GEN	ERIC - CONV	SIZE & 21.0	OTYM	ANUALLY SPECIFIED		t		
			+240	CONVERTER	RS REQUIRE	D: 0	(NO DC CONVERTERS REQUIRED)		1		
	1			+24V CONVE	RTER SLOT	8: 0	(NO DC CONVERTERS REQUIRED)		1		
	1				STIMATED	BATTER	Y RESERVE TIME		1		
	1			2 166 AH 4	AV STRINGS	= 2.44	HOURS (4 HOUR MINIMUM BATTERY RES	ERVE)	1		
	1										

RIGHT YELLOW	AT&T
48 0 5 48 0 00 48 0 48 0 48 0	Smartlink
48 0 48 0 48 0 48 0 48 0 48 0 48 0 48 0 48 0 48 0	Trylon
48 0 48 0 48 0 48 0	DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY.
48 0	SUBMITTALS
48 0	REV DATE DESCRIPTION BY
	A 12/11/19 90% CD SAR
	B 12/26/19 90% CD KSN
	C 01/14/20 90% CD GOP
	D 01/21/20 90% CD PTN
VOLTAGE WATTS	0 02/11/20 100% CD SAP
24 0	
	1 03/19/20 100% CD SAR
24 0	
24 0	
24 0	
24 0	AN OF MARYLAN
24 0	South State
PTION WORKSHEET)	
VOLTAGE WATTS	CORASSIONALIE
48 2208	Contract -
48 0	3-19-2020
48 0	0 10 2020
48 0	
48 0	"I CERTIFY THAT THESE DOCUMENTS WERE PREPARED BY
48 0	OR APPROVED BY ME AND THAT I AM A DULY LICENSED ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND,
48 0	LICENSE NUMBER 27217, EXPIRATION DATE 3/26/2020."
48 0	
48 0	
48 0	
48 0	
ECFED WATTS: 3008	FA#: 10126446
MP8: 65/2	GILL
MPS): 97.50 AMPS Fricent	9727 MOUNT PISGAH ROAD SILVER SPRING, MD 20903
JRED: 20 KW CITY: 0 KW DR)	EXISTING BUILDING
	SHEET DESCRIPTION
CITY: 0-TONS	
BUFFICENT	POWER LOAD CALCULATIONS
	SHEET NO.
	RF_1

GENERAL NOTES

1. GENERAL REQUIREMENTS

A. PURPOSE AND INTENT

I.THE DRAWING AND SPECIFICATION ARE INTENDED TO BE FULLY EXPLANATORY AND SUPPLEMENTARY, HOWEVER, SHOULD ANYTHING BE SHOWN, INDICATED, OR SPECIFIED ON ONE AND NOT THE OTHER, IT SHALL BE DONE THE SAME AS IF DISCREPANCIES BETWEEN REQUIREMENTS SHOWN IN BOTH. THE MORE STRINGENT REQUIREMENTS SHALL APPLY.

2. THE INTENTION OF THE DOCUMENT IS TO INCLUDE ALL LABOR AND MATERIALS REASONABLY NECESSARY FOR THE PROPER EXECUTION AND COMPLETION OF THE WORK AS STIPULATED IN THE CONTRACT.

A. CONFLICTS

OR DOING ANY WORK, NO EXTRA CHARGE OR COMPENSATION WILL BE ALLOWED DUE TO DIFFERENCES BETWEEN ACTUAL DIMENSIONS OR DIMENSIONS SHOWN ON PLANS SUBMIT NOTICE OF ANY DISCREPANCY IN DIMENSIONS OR OTHERWISE TO AT&T FOR RESOLUTION BEFORE PROCEEDING WITH THE WORK. 2. NO PLEA OF IGNORANCE OF CONDITIONS THAT EXIST, OR OF

DIFFICULTIES OR CONDITIONS THAT MAY BE ENCOUNTERED, OR OF ANY OTHER RELEVANT MATTER CONCERNING THE EXECUTION OF THE WORK WILL BE ACCEPTED AS AN EXCUSE FOR ANY FAILURE OR OMISSION ON THE PART OF THE CONTRACTOR TO FULFILL EVERY DETAIL OF ALL THE REQUIREMENTS OF THE CONSTRUCTION DOCUMENTS GOVERNING THE

A. CLEANING

KEEP THE SITE FREE FROM ACCUMULATION OF WASTE AND RUBBISH CAUSED BY EMPLOYEES AT THE COMPLETION OF THE WORK, REMOVE ALL WASTE AND NON-CONSTRUCTION MATERIAL INCLUDING ALL CONTRACT TOOLS, SCAFFOLDING, AND SURPLUS MATERIAL AND LEAVE SITE CLEAN AND READY FOR USE

A. CODES

1.CONTRACTOR SHALL BE RESPONSIBLE FOR FOLLOWING ALL LAWS, REGULATIONS, AND RULES PROMULGATED BY FEDERAL STATE AND LOCAL AUTHORITIES WITH JURISDICTION OVER THE SALTIER. THIS RESPONSIBILITY IS IN EFFECT REGARDLESS OF WEATHER THE LAW, ORDINANCE, REGULATION OR RULE IS MENTIONED IN THESE SPECIFICATIONS.

A. LICENSING

1. CONTRACTOR SHALL HAVE AND MAINTAIN A VALID CONTRACTOR'S LICENSE FOR THE LOCATION IN WHICH THE WORK IS TO BE PERFORMED. FOR JURISDICTIONS THAT LICENSE INDIVIDUAL TRADES, THE TRADESMAN OR SUBCONTRACTOR PERFORMING THOSE SHALL BE LICENSED, RESEARCHED AND COMPLY WITH THE LICENSING LAWS, PAY LICENSE FEES, AND SELECT AND INFORM SUBCONTRACTORS REGARDING THESE LAWS.

A. OSHA

1. FOLLOW ALL APPLICABLE RULES AND REGULATIONS OF THE OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATIONS AND STATE LAWS BASED IN THE FEDERAL OCCUPATION SAFETY AND HEALTH ACT. THESE REGULATIONS INCLUDE, BUT ARE NOT LIMITED TO, REGULATIONS DEALING WITH TOWER CONSTRUCTION AND SAFETY, EXCAVATION AND TRENCHING, AND WORK IN CONFINED SPACES. ENSURE THAT EMPLOYEES AND SUBCONTRACTORS WEAR HARD HATS AT ALL TIMES DURING CONSTRUCTION.

A. PHOTOS

1. PROVIDE PHOTOGRAPHIC EVIDENCE OF ALL FOUNDATION INSTALLATIONS, GROUNDING, AND TRENCHING AFTER PLACEMENT OF UTILITIES PRIOR TO BACKFILL.

A. BUILDING PERMITS

1. CONTRACTOR WILL SUBMIT CONSTRUCTION DOCUMENTS TO THE JURISDICTIONAL AUTHORITY FOR PLAN CHECK AND REVIEW. CONTRACTOR WILL SUBMIT LICENSING AND WORKMAN'S COMPENSATION INFORMATION TO THE JURISDICTION AS REQUIRED TO OBTAIN THE BUILDING PERMIT, CONTRACTOR SHALL COORDINATE AND SCHEDULE REQUIRED INSPECTIONS AND POST REQUIRED PERMITS AT THE JOB SITE COMPLY WITH SPECIFIC PROJECT RELATED REQUESTS AND SUGGESTIONS MADE BY BUILDING INSPECTOR, AND INFORM CONSTRUCTION MANAGER OF ANY SUCH WORK THAT MAY BE BEYOND THE SCOPE OF THE CONTRACT OR DEVIATE FROM THE CONSTRUCTION DOCUMENT. AT&T WILL REIMBURSE THE CONTRACTOR FEES FOR PLAN REVIEW, BUILDING PERMIT, CONNECTIONS, AND INSPECTIONS. (INCLUDED IN THE BASE PROPOSAL).

A. ZONING REGULATIONS AND CONDITIONAL USE PERMITS

1. CONTRACTOR WILL SUBMIT ALL ZONING AND CONDITIONAL USE PERMITS. SOME USE PERMITS MAY HAVE SPECIFIC REQUIREMENTS FOR THE SITE RELATED TO CONSTRUCTION, SUCH AS NOISE REGULATIONS, HOURS OF WORK, ACCESS LIMITATIONS, ETC. THE CONSTRUCTION MANAGER WILL INFORM THE CONTRACTOR OF THESE REQUIREMENTS AT THE PRE-BID MEETING OR AS SHOWN IN THE CONSTRUCTION DOCUMENTS.

A. FAA PERMIT AND TOWER LIGHTING

1. REFER TO CONSTRUCTION DOCUMENTS AND CONSTRUCTION MANAGER FOR FAA AND STATE LIGHTING REQUIREMENTS, CONTRACTOR SHALL PROVIDE TEMPORARY FM APPROVED LIGHTING UNTIL PERMANENT LIGHTING IS OPERATIONAL

A. TOWER SECURITY

A. IOWER SECURITY 1. IF REQUIRED, TOWER MUST BE FENCED, TEMPORARILY OR PERMANENTLY WITHIN 24 HOURS OF ERECTION. DO NOT ALLOW THE GATE ACCESSING THE TOWER AREA TO REMAIN OPEN OR UNATTENDED ANY TIME FOR ANY REASON. KEEP THE GATE CLOSED AND LOCKED WHEN NOT IN

L. SITE CONTROL

THE CONTRACTOR IS COMPLETELY RESPONSIBLE FOR CONTAINMENT OF SEDIMENT AND CONTROL OF EROSION AT THE SITE. ANY DAMAGE TO ADJACENT OR DOWNSTREAM PROPERTIES WILL BE CORRECTED BY THE CONTRACTOR AT NO EXPENSE TO AT&T. 2. THE CONTRACTOR IS TO MAINTAIN ADEQUATE DRAINAGE AT ALL

TIMES. DO NOT ALLOW WATER TO STAND OR POND. ANY DAMAGE TO STRUCTURES OR WORK ON THE SITE CAUSED BY INADEQUATE MAINTENANCE OF DRAINAGE PROVISIONS WILL BE THE RESPONSIBILITY OF THE CONTRACTOR AND ANY COST ASSOCIATED WITH REPAIRS FOR SUCH DAMAGE WILL BE AT THE CONTRACTOR'S EXPENSE.

3. ALL WASTE MATERIAL SHALL BE PROPERLY DISPOSED OF OFF-SITE OR AS DIRECTED BY CONSTRUCTION MANAGER AND IN ACCORDANCE WITH JURISDICTIONAL AUTHORITIES.

M. LIVESTOCK PROTECTION

1. PROTECT AND SECURE LIVESTOCK. MAINTAIN AND SECURE EXISTING PERIMETER FENCE AND/OR GATE ENCLOSURES.

2. SITE PREPARATION

A. SCOPE OF WORK INCLUDES 1. PROTECTION OF EXISTING TREES, VEGETATION AND LANDSCAPING MATERIALS WHICH MIGHT BE DAMAGED BY CONSTRUCTION ACTIVITIES. 2. TRIMMING OF EXISTING TREES AND VEGETATION AS REQUIRED FOR PROTECTION DURING CONSTRUCTION ACTIVITIES.

- 3. CLEANING AND GRUBBING OF STUMPS, VEGETATION, DEBRIS, RUBBISH, DESIGNATED TREES AND SITE IMPROVEMENTS.

4. TOPSOIL STRIPPING AND STOCKPILING. 5. TEMPORARY EROSION CONTROL, SILTATION CONTROL, AND DUST TEMPORARY PROTECTION OF ADJACENT PROPERTY, STRUCTURES, BENCHMARKS, AND MONUMENTS.

7. PROTECTION AND TEMPORARY RELOCATION, STORAGE AND RE-INSTALLATION OF EXISTING FENCE AND OTHER SITE IMPROVEMENTS SCHEDULED FOR RE-USE.

8. REMOVAL AND LEGDK DISPOSAL OF CLEARED MATERIALS.

B. PRODUCTS AND MATERIALS (AS APPROVED BY CONSTRUCTION MANAGER OR AS NOTED IN CONSTRUCTION DOCUMENTS)

MATERIALS USED FOR TREE PROTECTION, EROSION CONTROL, SILTATION CONTROL, AND DUST CONTROL.

3. EARTHWORK

A. SCOPE OF WORK INCLUDES 1. EXCAVATION, TRENCHING, FILLING, COMPACTION, AND GRADING FOR STRUCTURES, SITE IMPROVEMENTS AND UTILITIES. 2. MATERIALS FOR SUB-BASE, DRAINAGE, BACKFILL AND GRAVEL FOR

SLABS, PAVEMENT AND IMPROVEMENTS.

 ROCK EXCAVATION WITHOUT BLASTING.
 SUPPLY OF ADDITIONAL MATERIALS FOR OFFSITE AS REQUIRED. REMOVAL AND LEGDK DISPOSAL OF EXCAVATED MATERIAL AS REQUIRED.

B. QUALITY ASSURANCE 1. COMPACTION

WALKWAYS WILL OBTAIN A 95% COMPACTION AT A MINIMUM DRY DENSITY AS DETERMINED BY ASTM 0-1557 OR WITH PLUS OR MINUS 3% OF THE MOISTURE CONTENT

2. GRADING TOLERANCES OUTSIDE BUILDING LINES LAWNS, UNPAVED AREAS AND WALKS PLUS OR MINUS 1

INCH

B. UNDER PAVEMENTS PLUS OR MINUS 1/2 INCH. 3. GRADING TOLERANCES FOR FILL UNDER CONCRETE APPLICATIONS A. PLUS OR MINUS 1 INCH MEASURED WITH 10 FOOT STRAIGHT EDGE

C. PRODUCTS AND MATERIALS (AS APPROVED BY CONSTRUCTION MANAGER OR AS NOTED IN CONSTRUCTION DOCUMENTS)

1. SUB-BASE MATERIAL: GRADED MIXTURE OF NATURAL OR CRUSHED GRAVEL, CRUSHED STONE OR SLAG, AND NATURAL SAND. 2. WASHED MATERIAL, EVENLY GRADED MIXTURE OF CRUSHED STONE OR GRAVEL WITH 95% PASSING A 1-1/2 INCH SIEVE. 3. GRADING MATERIAL WILL CONSIST OF SATISFACTORY NATIVE OR IMPORTED SOIL MATERIALS FREE OF CLAY, ROCK OR GRAVEL NOT LARGER THAN 2 INCHES IN ANY DIMENSION, DEBRIS, WASTE, FROZEN MATERIALS AND OTHER UNSUITABLE MATERIALS WILL NOT BE ALLOWED FOR USE. IMPORTED MATERIALS SHALL HAVE A CLAY CONTENT OF NO MORE THAN 5%.

4. GRAVEL MATERIAL: EVENLY GRADED MIXTURE OF CRUSHED STONE OR GRAVEL WITH 95% PASSING A 1-1/2 INCH SIEVE. 5. GEOTEXTILE FABRIC: AS PER CONSTRUCTION DOCUMENTS.

D. CLEARING AND GRUBBING

D. CLEARING AND GROBBING 1. REMOVE ALL VEGETATION AND MATERIALS AS REQUIRED. REMOVE STUMPS COMPLETELY UNDER FOUNDATIONS AND ROADWAYS. DISPOSE OF CLEARING AND GRUBBING OFF-SITE OR IN AN ON-SITE LOCATION APPROVED BY CONSTRUCTION MANAGER.

E. STRIPPING

STRIP NOT LESS 3 INCHES OF SOD AND TOPSOIL FROM AREAS THAT WILL UNDERLAY GRAVEL, PAVEMENT, NEW STRUCTURES OR EMBANKMENTS. STOCKPILE STRIPPING ON-SITE FOR RE-USE AND FINAL LANDSCAPING.

G. EMBANKMENT

CONSTRUCT EMBANKMENT TO THE LINES AND GRADES SHOWN ON THE DRAWING 2. CONSTRUCT EMBANKMENT FROM ON-SITE EXCAVATION MATERIAL WHEN

SUITABLE. USE IMPORTED BACKFILL ONLY AFTER AVAILABLE ON-SITE EXCAVATION MATERIAL HAS BEEN USED.

3. CONSTRUCT IN LIFTS OF NOT MORE THAN 12 INCHES IN LOOSE DEPTH. THE FULL WIDTH OF THE CROSS SECTION SHALL BE BROUGHT UP UNIFORMLY.

4. MATERIAL SHALL BE PLACED IN LAYERS AND SHALL BE NEAR OPTIMUM MOISTURE CONTENT BEFORE ROLLING TO OBTAIN THE PRESCRIBED COMPACTION. WETTING OR DRYING OF THE MATERIAL AND MANIPULATION TO SECURE A UNIFORM MOISTURE CONTENT THROUGHOUT THE LAYERS MAY BE REQUIRED. SUCH OPERATIONS SHALL BE INCLUDED IN THE APPROPRIATE BID ITEM. SHOULD THE MATERIAL BE TOO WET TO PERMIT PROPER COMPACTION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO UTILIZE MATERIAL WITH AN ACCEPTABLE MOISTURE CONTENT. DO NOT PLACE FROZEN MATERIAL IN THE EMBANKMENT AND DO NOT

PLACE EMBANKMENT MATERIAL UPON FROZEN MATERIAL 6. CONTRACTOR SHALL BE RESPONSIBLE FOR THE STABILITY OF EMBANKMENTS AND THE REPLACEMENT OF ANY PORTION WHICH HAS BECOME DISPLACED DUE TO CONTRACTOR'S OPERATIONS.

7. START LAYERS IN THE DEEPEST PORTION OF THE FILL AND AS PLACEMENT PROGRESSES, CONSTRUCT LAYERS APPROXIMATELY PARALLEL TO THE FINISH GRADE LINE

6. ROUTE EQUIPMENT BOTH LOADED AND EMPTY, OVER THE FULL WIDTH OF THE EMBANKMENT TO ENSURE UNIFORMITY OF MATERIAL PLACEMENT. 9. COMPACT EMBANKMENT UNDERLYING NEW GRAVEL PAVING, FLOOR SLABS AND STRUCTURES TO BE 95% COMPACTION AT A MINIMUM DRY DENSITY AS DETERMINED BY ASTM 0-1557 OR WITHIN PLUS OR MINUS 3% OF OPTIMUM MOISTURE CONTENT. COMPACT NON-STRUCTURAL AREA EMBANKMENTS TO A MINIMUM OF 90% OF ASTM 0-1557.

H. SITE GRADING

1. USING ON-SITE EXCAVATION MATERIAL, SHAPE, TRIM, FINISH AND COMPACT SURFACE AREAS TO CONFORM TO THE LINES. GRADES AND CROSS SECTIONS SHOWN ON THE DRAWING OR AS DESIGNATED BY THE CONSTRUCTION MANAGER.

2. GRADE SURFACES TO DRAIN AND ELIMINATE ANY PONDING OR FROSION

5. ELIMINATE WHEEL RUTS BY REGRADING.

4. COMPACT AREAS OF UNDERLYING NEW GRAVEL, PAVING, FLOOR SLABS AND STRUCTURES TO BE AT 95% COMPACTION AT A MAXIMUM DRY DENSITY AS DETERMINED BY THE ASTM 0-1557 OR WITHIN PLUS OR MINUS 3% OF OPTIMUM MOISTURE CONTENT.

5. CONSTRUCT FINISH SURFACE OF SITE GRADING AREAS WITHIN 1 INCH FROM SPECIFIED GRADE.

SUBGRADE PREPARATION

1. SHAPE TOP OF SUBGRADE TO THE LINES AND GRADES SHOWN ON THE DRAWINGS

2. MAINTAIN TOP OF SUBGRADE IN A FREE-DRAINING CONDITION. 3. DO NOT STOCK PILE MATERIAL ON TOP OF SUBGRADE UNLESS AUTHORIZED BY CONSTRUCTION MANAGER.

4. COMPACT THE TOP 12 INCHES OF SUBGRADE TO A 95% COMPACTION AT A MAXIMUM DRY DENSITY AS DETERMINED BY ASTM 0-1557 OR WITHIN PLUS OR MINUS 3% OF THE OPTIMUM MOISTURE CONTENT. 5. CONSTRUCT TOP OF SUBGRADE WITHIN 1 INCH OF ESTABLISHED GRADE AND CROSS SECTION.

J. GEOTEXTILE FABRIC

1. LAY GEOTEXTILE FABRIC OVER COMPACTED SUBGRADE IN THE COMPOUND AREA AND UNDER LENGTH OF ROAD (WHEN REQUIRED). LAP ALL JOINTS TO A MINIMUM OF 36 INCHES.

K. GRAVEL SURFACING

1. CONSTRUCT GRAVEL SURFACING AREAS USING CRUSHED AGGREGATE BASE AND FINISH COURSES AS SPECIFIED BY CONSTRUCTION MANAGER. SPREAD GRAVEL AND RAKE TO OBTAIN A UNIFORM SURFACE AREA.

I LANDSCAPING

1. FURNISH, INSTALL AND MAINTAIN LANDSCAPE WORK AS SHOWN AND/OR REQUIRED WITHIN THE CONSTRUCTION DOCUMENTS OR AS SPECIFIED IN THE CONSTRUCTION SPECIFICATIONS.

M. CONCRETE FORM WORK

1. FORMS: SMOOTH AND FREE OF SURFACE IRREGULARITIES. UTILIZE FORM RELEASE AGENTS. 2. CHAMFER EXPOSED EDGES OF ALL TOWER FOUNDATION SHALL

RECEIVE A ⅔ INCH BY ⅔ INCH 45 DEGREE CHAMFER. OTHER EXPOSED EDGES SHALL RECEIVE A TOOLED RADIUS FINISH.

UPON COMPLETION, REMOVE ALL FORMS INCLUDING THOSE CONCEALED OR BURIED.

4. REFER TO STRUCTURAL DRAWINGS FOR ADDITIONAL REQUIREMENTS.

4. GENERAL NOTES

- PROGRESSION IS NOT INTERRUPTED.
- 2. THE CONTRACTOR IS RESPONSIBLE FOR MAINTAINING A NEAT AND
- MOOTH EVEN-TEXTURED SURFACE. SUCH PIPELINES, SUBSURFACE STRUCTURES AND/OR UTILITIES IN LOCATOR COMPANY.
- THE OWNER'S REPRESENTATIVE
- PRIVATE PROPERTY TO AT LEAST AS GOOD OF CONDITION AS REPRESENTATIVE.
- BE REPLACED.
- SHORING SHALL BE DONE IN ACCORDANCE WITH OSHA REGULATIONS FOR CONSTRUCTION.
- SHALL BE COORDINATED WITH THE OWNER OR OWNER'S REPRESENTATIVE BEFORE EACH AND EVERY CONNECTION TO EXISTING SYSTEMS IS MADE. 12MAINTAIN FLOW FOR ALL EXISTING UTILITIES

INSTALLATION OF UTILITIES.

UNLESS OTHERWISE NOTED.

AND THE TOWER.

DEVELOPMENT

1. IT IS THE CONTRACTOR'S RESPONSIBILITY TO EXAMINE ALL PLAN SHEETS AND SPECIFICATIONS AND COORDINATE HIS WORK WITH THE WORK OF ALL OTHER CONTRACTORS TO ENSURE THAT WORK

ORDERLY SITE, YARD AND GROUNDS. CONTRACTOR SHALL REMOVE AND DISPOSE OFF SITE ALL RUBBISH, WASTE MATERIAL, LITTER AND ALL FOREIGN SUBSTANCES. REMOVE PETROCHEMICAL SPILLS, STAINS AND OTHER FOREIGN DEPOSITS. RAKE GROUND TO A

3. THE PLANS SHOW SOME KNOWN SUBSURFACE STRUCTURE ABOVE GROUND STRUCTURES AND/OR UTILITIES BELIEVED TO EXIST IN THE WORKING AREA, EXACT LOCATION OF WHICH MAY VARY FROM THE LOCATION INDICATED. IN PARTICULAR THE CONTRACTOR IS WARNED THAT THE EXACT OR EVEN APPROXIMATE LOCATION OF

THE AREA MAY BE SHOWN OR MAY NOT BE SHOWN AND IT SHALL BE HIS RESPONSIBILITY TO PROCEED WITH GREAT CARE IN 48 HOURS BEFORE YOU DIG, DRILL OR BLAST CALL LOCAL UTILITIES

4. THE OWNER OR OWNER'S REPRESENTATIVE SHALL BE NOTIFIED IN WRITING OF ANY CONDITIONS THAT VARY FROM THOSE SHOWN ON THE PLANS. THE CONTRACTOR'S WORK SHALL NOT VARY FROM THE PLANS WITHOUT THE EXPRESSED APPROVAL OF THE OWNER OR

5. THE CONTRACTOR IS INSTRUCTED TO COOPERATE WITH ANY AND ALL OTHER CONTRACTORS PERFORMING WORK ON THE SITE DURING THE PERFORMANCE OF THIS CONTRACT.

6. THE CONTRACTOR SHALL RESTORE ALL DAMAGED, PUBLIC OR BEFORE DISTURBED AS DETERMINED BY THE OWNER OR OWNER'S

7. THE CONTRACTOR SHALL COMPLY WITH ALL REQUIRED PERMITS. 8. THE CONTRACTOR SHALL PROTECT EXISTING PROPERTY LINE MONUMENTATION. ANY MONUMENTATION DISTURBED OR DESTROYED, AS JUDGED BY THE OWNER OR OWNER'S REPRESENTATIVE, SHALL

9 ALL TRENCH EXCAVATION AND ANY REQUIRED SHEETING AND

10.CONTRACTOR SHALL BE RESPONSIBLE FOR DEWATERING AND THE MAINTENANCE OF SURFACE DRAINAGE DURING THE COURSE OF

11ALL UTILITY WORK INVOLVING CONNECTIONS TO EXISTING SYSTEMS

13ALL SITE FILL SHALL MEET SELECTED FILL STANDARDS AS DEFINED BY THE OWNER OF OWNER'S REPRESENTATIVE ON THE DRAWINGS OR GEOTECHNICAL REPORT RECOMMENDATIONS

14CONTRACTOR TO GRADE ALL AREAS OF THE SITE TO PROVIDE POSITIVE DRAINAGE AWAY FROM THE BUILDING OR EQUIPMENT PAD

AND THE LOWER. ISIF NECESSARY, THE CONTRACTOR IS RESPONSIBLE FOR REPAIRING AND REGRADING ROADWAY AND ANY DISTURBED AREAS FOLLOWING

16NO COMMERCIAL MESSAGES TO BE DISPLAYED ON TOWER 17WATER AND SEWER SERVICES ARE NOT REQUIRED FOR THE

18THE CONTRACTOR SHALL FURNISH AND INSTALL ALL MATERIAL

19ELECTRICAL DRAWINGS HAVE BEEN REVIEWED AND SEALED FOR STRUCTURAL PURPOSES ONLY.

AT&T

DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY.

SUBMITTALS							
REV	DATE DESCRIPTION E						
A	12/11/19	90% CD	SAR				
в	12/26/19	90% CD	KSN				
с	01/14/20	90% CD	GOP				
D	01/21/20	90% CD	PTN				
0	02/11/20	100% CD	SAR				
1	03/19/20	100% CD	SAR				

3-19-2020

"I CERTIFY THAT THESE DOCUMENTS WERE PREPARED BY OR APPROVED BY ME AND THAT I AM A DULY LICENSED NIGNEER UNDER THE LAWS OF THE STATE OF MARYLAND LICENSE NUMBER 27217, EXPIRATION DATE 3/26/2020."

PROJECT TITLE

USID: 100205 FA#: 10128448

GILL

9727 MOUNT PISGAH ROAD SILVER SPRING, MD 20903

EXISTING BUILDING

SHEET DESCRIPTION

GENERAL NOTES

SHEET NO.

GN-1

Арр ио:	202003111/			
	Appli	cation General Infomation	on	
Applicant Name	Smartlink LLC	L	Jpdated	3/10/2020
Application Type	Minor Modification	Α	nn. Plan?	Yes
Carrier	AT&T Wireless	V	Vill site be used to su	upport
		g t	overnment	No
Solution Type		C	or other equipment f	or
Existing	Existing	g	overnment use?	
Application Descrip	tion	(ovt. Use Desc.	
	Site Infomation			
			-	
Site Id	53.01	Zoning	R-H	
Structure Type	Building	Latitude	39.016778	3
Address	9727 Mt. Pisgah Rd, Silver Spring	Longitude	-76.97451	7
County Site Name	Chateau Apartments	Ground Elevation	320	5
Carrier Site Name	Gill	City	Silver Spring	
Site Owner	Hillzo LP	Lease Status	Leased	
Structure Owner	Hillzo LP	Does the structure registratio	equire an antenna n under ECC Title 47	No
Existing Structure H	eight 151			
Provide the propos of the replacement	ed height	(New, Replacement,	Colocation Only)	
Replacement Apps	Only)	Distance to Commer	cial Property	
Justification of why	this site was selected:	(New, Replacement,	Colocation Unly)	
NearbySites (New, F	Replacement Apps Only):			

App No:

2020031117

Screening considerations(New, Colocations, Replacement Apps Only):

App No:

2020031117

6409 Questions Does this qu	alify as a 6409 application? (Minor Mod, Colocations Only) No
For towers outside the public ROW will the proposed installation increase the height of the structure by: (1) more than 10% or (2) more than 20 feet, whichever is greater?	Will the proposed installation increase the width by adding appurtenance to the body of the structure that would protrude from the edge of the structure by more than 6 feet?
For towers outside the public ROW will the proposed installation increase the width by adding appurtenance to the body of the structure that would protrude from the edge of the structure by more than 20 feet? Will the proposed installation increase the height of the structure by: (1) more than 10% or (2) more than 10 feet, whichever is greater?	More than four Equipment Cabinets? YN Will the proposed installation require excavation or expansion outside the current boundaries of the site? Does the structure or current installation have concealment elements/measures? If yes, describe how the proposed installation does not defeat the existing concealment.
	Small Wireless Facility Information
Small Wireless Facility Questions	Small Wireless Facility? No
Is the structure 10% taller than adjacent stru Please list adjacent structure heights Tribal Lands? No	ctures? Cumulative volume of the proposed wireless equipment(s) 240.69 exclusive of antennas in cubic feet Cumulative volume of the proposed antenna antenna(s) exclusive of
	equipment
	ROW Information
PROW? No	Pole Number
ROW owner	
ROW width	

App No:	2020031117	
		Ante

	Antenna Infomation
Antenna Compliance	Yes
Compliance Desc	
Antenna Location	Yes
Antenna Loc. Desc.	
Env. Assessment	
Cat. Excluded? Routine Env. Evaluatio	checked on
Antenna Model CCL B	SA-M65R-BUU-H6

Frequency	704-710,	734-740, 7	10-716, 740-7	746, 716-722, 824-835,	869-880, 845-846.5, 8	90-891.5, 1870-1	.885, 1950-1965,
RAD Center	142	Max ERP	1046	Antenna Dimensions	72(h)x28.5(w).9.7(d)	Quantity	2

Moffet Rd

Braddock

Cottrell Terrace

Neely Rd

Oakview Dr

Capital

۲

۲

R

Home Comfort Air Services

===

Mt Pisgah Rd

Hampshire Green Ln

Avery Park

Avery real Apartment Homes Greenwich

Moffet Rd NewHampshire Ave CASH FOR JUNK CARS DMV

650

650

650

Map

Hampshire Greeng Göögle ě Imagery ©2020 Commonwealth of Virginia, Maxar Technologies, Sanborn, U.S. Geological Survey, USDA Farm Service Agency, Map data ©2020 **United States** Send feedback

Terms

200 ft

CCI - BSA-M65R-BUU-H6

V FREQUENCY BAND	Elevation	< -18	< -18	< -18	< -18	< -18	< -18
	Sidelobes (1st	-ID					
604-806 MHz	Upper)	ав	ав	aв	dВ	aв	aв
_	Front-to-Back	> 30 dB	> 30 dB	> 30 dB	> 30 dB	> 30 dB	> 30 dB
698-798 MHz	Ratio @180°	- 00 00	- 00 GD	2 00 QD	2 00 QD	2 00 QD	> 00 UD
	Front-to-Back	> 27 dB	> 30 dB	> 30 dB	> 30 dB	> 30 dB	> 28 dB
698-896 MHz	Ratio over <u>+</u> 20°						
□ 698-960 MHz	Cross-Polar						
	Port-to-Port	> 25 dB	> 25 dB	> 25 dB	> 25 dB	> 25 dB	> 25 dB
790-960 MHz	Isolation						
	Voltage						
824-896 MHz	Standing Wave	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1	< 1.5:1
_	Ratio(VSWR)						
1710-1880 MHz	Passive	≤ - 150	\leq -150	\leq -150	\leq -150	\leq -150	≤ - 150
	Intermodulation	dBc	dBc	dBc	dBc	dBc	dBc
1692-2180 MHZ	(2×20W)		0.50	0.00	0.00	0.00	
1695-2360 MHz	Input Power	500	500	300	300	300	300
	Continuous	watts	watts	watts	watts	watts	watts
1695-2690 MHz	Wave (CW)						
-	Polarization	Dual	Dual	Dual	Dual	Dual	Dual
1850-1995 MHz		Linear	Linear	Linear	Linear	Linear	Linear
2300-2400 MHz		45°	45°	45°	45°	45°	45°
2300-2690 MHz	Input	50	50	50	50	50	50
	Impedance	ohms	ohms	ohms	ohms	ohms	ohms
2496-2690 MHz	Lightning	DC	DC	DC	DC	DC	DC
	Protection		DC	DC	DC	DC	DC
		Ground	Ground	Ground	Ground	Ground	Ground

✓ Mechanical

Dimensions (L×W×D)	72.0×28.5×9.7 in (1828×723×245 mm)
Survival Wind Speed	> 150 mph (> 240 kph)
Front Wind Load	438 lbs (1947 N) @ 100 mph (161 kph)
Side Wind Load	175 lbs (778 N) @ 100 mph (161 kph)
Equivalent Flat Plate	$171 \text{ ft}^2 (1.6 \text{ m}^2)$
Area	
Weight *	101.0 lbs (45.9 kg)
RET System Weight	6.6 lbs (3.0 kg)
Connector	12 \times 7-16 DIN female long neck
Mounting Pole	2 to 5 in (5 to 12 cm)

* Weight excludes mounting and RET

RET Connection Diagram

Connector Spacing

✓ HEIGHT 2 ft. (458 - 761 mm) 3 ft. (762 - 1066 mm)

- 4 ft. (1067 1371 mm)
- 5 ft. (1372 1676 mm)
- 6 ft. (1677 1981 mm)
- 7 ft. (1982 2286 mm)
- 8 ft. (2287 2590 mm)
- 9 ft. (2591 2896 mm)

V HORIZONTAL BEAMWIDTH

TBD

✤ Typical Antenna Patterns

For detailed information on additional support@cciproducts.com

761 MHz Azimuth Elevation 7

1910 MHz Azimuth Elevation

Tweet Kenail

EXTENDING WIRELESS PERFORMANCE

CCI HOME CONTACT US CAREER OPPORTUNITIES ABOUT US CORPORATE GOVERNANCE PRIVACY POLICY CONFLICT MINERAL

POLICY

NEWS

NEWSROOM PRODUCT ANNOUNCMENTS

SUPPORT

TECHNICAL SUPPORT CUSTOMER SERVICES

Communication Components Inc.

89 Leuning Street South Hackensack, NJ 07606 +1 (201) 342-3338 +1 (201) 342-3339 fax sales@cciproducts.com

Copyright © 2020. CCI.

8618 Westwood Center Drive, Suite 315, Vienna, VA 22182 703.276.1100 • 703.276.1169 fax info@sitesafe.com • www.sitesafe.com

Smartlink on behalf of AT&T Mobility, LLC Site FA – 10128448 Site ID – MDL03821 USID – 100205 Site Name – GILL (MRWSH034472)

9727 Mount Pisgah Road Silver Spring, MD 20903

Latitude: N39-01-00.00 Longitude: W76-58-30.00 Structure Type: Rooftop

R

Report generated date: January 24, 2020 Report by: Leo Romero Customer Contact: Lauren Kersey

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

Sitesafe logo is a registered trademark of Site Safe, LLC. All rights reserved.

AT&T Proprietary (Internal use only). Not for use or disclosure outside the AT&T companies, except under written agreement. @2019 AT&T intellectual property. Ati rights reserved.

Table of Contents

1 GENERAL SITE SUMMARY	3
 1.1 Report Summary 1.2 Fall Arrest Anchor Point Summary 1.3 Signage Summary 	3 3 4
2 SCALE MAPS OF SITE	5
3 ANTENNA INVENTORY	7
4 EMISSION PREDICTIONS	. 10
5 SITE COMPLIANCE	. 14
5.1 Site Compliance Statement5.2 Actions for Site Compliance	14 14
6 REVIEWER CERTIFICATION	. 16
APPENDIX A – STATEMENT OF LIMITING CONDITIONS	. 17
APPENDIX B - REGULATORY BACKGROUND INFORMATION	. 18
FCC Rules and Regulations OSHA Statement	18 19
APPENDIX C - SAFETY PLAN AND PROCEDURES	. 20
APPENDIX D - RF EMISSIONS	. 21
APPENDIX E - ASSUMPTIONS AND DEFINITIONS	. 22
General Model Assumptions Use of Generic Antennas	22 22
APPENDIX F - DEFINITIONS	. 23
APPENDIX G – REFERENCES	. 25

1 General Site Summary

1.1 Report Summary

AT&T Mobility, LLC	Summary
Max Cumulative Simulated RFE Level on the	9,679.0% General Public Limit 1" in front of AT&T
Ground	Mobility, LLC's Gamma Sector Antenna #8
Max Cumulative Simulated RFE Level on the	9,679.0% General Public Limit 1" in front of AT&T
Rooftop Walking Surface	Mobility, LLC's Gamma Sector Antenna #8
Max Cumulative Simulated RFE Level on the	<1% General Public Limit
Ground	
Compliant per FCC Rules and Regulations?	Will Be Compliant
Compliant per AT&T Mobility, LLC's Policy?	No

The following documents were provided by the client and were utilized to create this report:

RFDS: WASHINGTON-D.C.-MARYLAND_WASHINGTON-DC-BALTIMORE_GILL_2020-Cell-Site-RF-Modifications_Split-Sector_006650_2251A0S58F_10128448_100205_10-08-2019_Final-Approved_v1.00

CD's: 10128448.AE201.REV C.GILL.100205.01142020

RF Powers Used: MAX RRH Powers

1.2 Fall Arrest Anchor Point Summary

Fall Arrest Anchor & Parapet Info	Parapet Available (Y/N)	Parapet Height (inches)	Fall Arrest Anchor Available (Y/N)
Roof Safety Info	N	0	N

1.3 Signage Summary

11	di lite dite via	In Anal orginage	TEXISING OF	gridger					
AT&T Signage Locations		Information 2	Notice	Notice 2	Caution	Courtion 2	Warping	Warning 2	Barriers
Access	2							rionining 2	Building
Point(s)									
Alpha									
Beta									
Gamma									

a. Pre-Site Visit AT&T Signage (Existing Signage)

Note: All existing signage was documented during a previous site visit on 6/27/17.

b. Proposed AT&T Signage

AT&T Signage Locations	Information 1	Information 2	Notice	Notice 2	Caution	Caution 2	Warning	Warning 2	Barriers
Access Point(s)									
Alpha						3			X
Beta						9			X
Gamma								4	X

2 Scale Maps of Site

The following diagrams are included:

- Site Scale Map •
- RF Exposure Diagram
 RF Exposure Diagram Detailed View West
 AT&T Mobility, LLC Contribution

	(Feet)	
	1	1
0	17.9	35.8
www	sitesafe.com	
Site N	ame:GILL	
1/24/	2020 1:07:09 PM	

3 Antenna Inventory

The following antenna inventory was obtained by the customer and was utilized to create the site model diagrams:

	_	r												_						
EDI	50	22	5°	20	20	50	5°	10°	120	5°	5°	5°	6°	2°	20	6°	°9	4 0	¢4	40
IGM	ô	ô	°	°	°	°	°	°	°	°	°o	°	°	°0°	20	°o	°	ô	စိ	စိ
-	4.8	ъ	ē	ē	ē	Ś	Ω	۰*9	¢*	6'	-9	¢*	ω	7.8'	4.8'	4	4	4	4	4
Ant Gain (dBd)	12	13.56	13.56	15.36	15.56	15.56	14.26	13.56	13.56	15.36	15.56	15.56	14.26	12	12	14.25	14.25	15.84	16.25	16.25
Total ERP (Watts)	1267.9	3631.8	3631.8	5496.9	2878	2878	2666.9	3631.8	3631.8	5496.9	2878	2878	2666.9	1267.9	1267.9	2128.6	2128.6	6139.3	3373.6	3373.6
TX	-	-	-	-	-	-	-	-	-	-	-	1	-		-	-	-	-	-	-
Misc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt
Power	IPO	TPO	IPO	DAL	TPO	TPO	TPO	TPO	TPO	IPO	TPO	TPO	TPO	TPO	IPO	IPO	TPO	TPO	TPO	IPO
Power	8	160	160	160	80	80	100	160	160	160	80	80	100	80	80	80	80	160	80	80
Ant Len	4.3	Ø	ω	ω	80	80	4	œ	8	8	8	8	4	4.3	4.3	9	9	9	9	9
Hor BW	68.4	75	75	59	61	61	61.1	75	75	59	61	61	61.1	68.4	68.4	36.3	36.3	32.3	27.9	27.9
Az	0	0	0	0	0	0	0	110	110	110	110	110	110	150	270	260	260	260	260	260
Technology	UMTS	LTE	LTE	LTE	LTE	AWS3	LTE	LFE	LTE	LTE	LTE	AWS3	LTE	UMTS	UMTS	LTE	LTE	LTE	LTE	AWS3
TX Freq	850	737	763	1900	2110	2160	2300	737	763	0061	2110	2160	2300	850	850	737	263	1900	2110	2160
e Cy	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel
Antenna Make & Madel	Kathrein-Scala 742-264	Commscope NNH4- 65C-R6	Commscope NNH4- 65C-R6	Commscope NNH4- 65C-R6	Commscope NNH4- 65C-R6	Commscope NNH4- 65C-R6	CCI Antennas OPA- 65R-LCUU-H4	Commscope NNH4- 65C-R6	Commscope NNH4- 65C-R6	Commscope NNH4- 65C-R6	Commscope NNH4- 65C-R6	Commscope NNH4- 65C-R6	CCI Antennas OPA- 65R-LCUU-H4	Kathrein-Scala 742-264	Kathrein-Scala 742-264	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)				
Onercifor	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC (Proposed)	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC (Proposed)	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC	AT&T MOBILITY LLC (Proposed)				
Ant ID	-	7	2	2	2	2	σ	4	4	4	4	4	S	9	7	8	ω	œ	ω	œ

A18.1 Proprietary (Infemal use only). Not for use or disclosure outside the A18.1 companies, except under written agreement, ©2019 A18.1 intellectual property. A11 rights reserved. P3ge 7

EDT	°9	6°	4°	4°	4°	6°	40	°9	°9	6°	40	ô	ô	°	00	°	ô	°	ô	°	°	ô	ô	ô	°	ô
MDT	8	°	°	°	°	ô	°0	ô	ô	°	ô	ô	ô	°0	00	°	8	°	°	°	°	ô	o	°	°	ô
2	4.	4	4'	4'	4'	4'	4	,4	4	4	4	15.7	13.9'	14.5'	14.5'	14.7'	20.5'	20.5'	20.7'	20.7'	4.5'	4.5	3.9'	4.7'	17'	15.9'
Ant Gain (dBd)	14.25	14.25	15.85	16.25	16.25	14.25	15.85	14.25	14.25	14.25	15.85	15.23	12.56	15.86	15.86	15.37	15.86	15.86	15.37	12.14	15.86	15.86	12.56	15.37	15.01	13.43
Total ERP (Wothe)	2128.6	2128.6	6153.5	3373.6	3373.6	2128.6	3845.9	2128.6	2128.6	2128.6	3845.9	0	2884.8	4625.7	4625.7	4132.2	4625.7	4625.7	4132.2	2618.9	4625.7	4625.7	2884.8	4132.2	5071.3	2202.9
TX TX	-	I	-	-	1	-	1		-	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Misc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt											
Power	OdI	TPO	ERP	TPO	TPO	TPO	TPO	TPO	TPO	TPO	TPO	TPO	TPO	TPO	TPO	TPO	TPO									
Power	80	80	160	80	80	80	00[80	80	80	100	0	160	120	120	120	120	120	120	160	120	120	160	120	160	10
Ant Len	¢	9	9	9	6	9	6	6	6	Ŷ	6	4.6	6.3	4.9	4.9	4.7	4.9	4.9	4.7	4.6	4.9	4.9	6.3	4.7	4.1	6.3
Hor BW	33.8	33.8	33.9	27.1	27.1	36.3	23.6	36.3	33.8	33.8	25.5	65	65	65	65	- 65	65	65	65	65	65	65	65	65	65	65
Az	260	260	260	260	260	260	260	260	260	260	260	60	30	30	30	90	150	150	150	150	270	270	270	270	100	8
Technology	LTE	LTE	LTE	LTE	AWS3	LTE	LTE	LTE	LTE	LTE	AWS3								1.00							
TX Freq	737	763	0061	2110	2160	763	2300	737	737	763	2300	2100	700	1900	2100	1900	1900	2100	1900	700	1900	2100	700	1900	2500	862
Tune	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel	Panel											
Antanna Maka 8 Madal	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	CCI Antennas BSA- M65R-BUU-H6 (L-Beam)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	CCI Antennas BSA- M65R-BUU-H6 (R-Beam)	Generic Panel	Generic Panel	Ericsson AIR 32 B4A B2P	Ericsson AIR 32 B4A B2P	Ericsson AIR 21 B2A B4P	Ericsson AIR 32 B4A B2P	Ericsson AIR 32 B4A B2P	Ericsson AIR 21 B2A B4P	Generic Panel	Ericsson AIR 32 B4A B2P	Ericsson AIR 32 B4A B2P	Generic Panel	Ericsson AIR 21 B2A B4P	Generic Panel	Generic Panel				
Omerator	AT&T MOBILITY LLC (Proposed)	CRICKET COMMUNICATIONS (Decommissioned)	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	T-MOBILE	SPRINT	SPRINT										
Ant 10	8	œ	œ	œ	œ	6	6	6	0	6	6	0	=	12	12	13	14	14	15	16	17	17	18	19	20	21

8

A181 Proprietary (Internal use only). Not for use or disclosure outside the A181 companies, except under written agreement, @2019 A181 tratellectual property. A11 rights reserved. Page 8

ſ	1
	Шŝ
	4
	ហ៊
	<u>لد</u>
L	1
L	0]
h	1
	-
	G
1	

	Đ	ô	°	ô	ô	ô	ô	00	ô	°	00	ô	°	°	ô	°	ô	ô	°	°o	°	°	°	8
	ADT	°	00	00	00	°	00	00	°0	00	00	°0	°0	°0	°0	°o	°o	00	00	00	00	0°	°o	0
	Z	5.9'	5.9'	5.9'	17"	17'	6.9'	6.9'	13'	19'	13'	15"	13'	19'	16	18'	9.9'	16'	17'	7.6'	7.6'	18'	17'	18
Ant	Gain dBd)	16.26 1	13.43 1	16.26 1	15.01	15.01	13.43 1	16.26 1	15.01	48.86	15.01	32.66	15.01	37.66	32.66	9.97	16.01	42.36	37.66	2.97 1	2.97 1	9.97	37.66	9.97
[otal	Katts) (7608	202.9	7608	071.3	071.3	202.9	7608	267.8	769.1	267.8	36.9	267.8	58.3	18.5	100	20	72.2	58.3 3	100	100	100	58.3	8
-	TX ount (V	0	0 2	0	0 5	0 5	0 2	0	0	0	0 1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Aisc oss C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ower Unit	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt	Watt								
	ver /pe	PO	ЪО	Q	D	D	РО	PO	PO	РО	РО	РО	D	PO	РО	RP	RР	РО	РО	RР	RР	RP	PO	RP
_	er J	T O		T O	T O		I O		T	I I	I	2 T	I	F	I I			T I	I I				1 I	
	Pow	18(100	18(16(16(10	18(40	0.0	40	0.0	40	0.0	0.0) D	20	0.0	0.0	Σ	100	100	0.0	10
Ant	() () () () () () () () () () () () () (6.3	6.3	6.3	4.1	4.1	6.3	6.3	4.1	7	4.1	0	4. l	7	-	14	2.2	-	2	4.7	4.7	14	0	14
	Hor BM (Deg)	65	65	65	65	65	65	65	65	2	65	2	65	2	2	360	06	2	2	360	360	360	0	360
	Az (Deg)	8	270	270	280	0	0	0	180	190	260	280	355	6	6	0	160	340	10	0	0	0	170	0
	Technology																							
	TX Freq (MHz)	1900	862	1900	2500	2500	862	1900	2500	80000	2500	23000	2500	18000	23000	850	5800	80000	18000	450	450	850	18000	850
	Type	Panel	Aperture	Panel	Aperture	Panel	Aperture	Aperture	Omni	Panel	Aperture	Aperture	Omni	Omni	Omni	Aperture	Omni							
	Antenna Make & Model	Generic Panel	Generic Microwave	Generic Panel	Generic Microwave	Generic Panel	Generic Microwave	Generic Microwave	Generic Omni	Generic Panel	Generic Microwave	Generic Microwave	Generic Omni	Generic Omni	Generic Omni	Generic Microwave	Generic Omni							
	Operator	SPRINT	SPRINT	SPRINT	SPRINT	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER	UNKNOWN CARRIER								
	Ant ID	21	22	22	23	24	25	25	26	27	28	\$1	8	31	32	R	34	35	36	37	æ	39	64	41

provided by the operator or based on Sitesafe experience. The values used in the modeling may be greater than are currently deployed. For other operators at this site the use of "Generic" as an antenna model or "Unknown" for a wireless operator means the information with regard to operator, their FCC license and/or antenna information was not available nor could it be secured while on site. Other operator's equipment, antenna models and powers used for modeling are based on obtained information or Sitesafe experience. Proposed equipment is tagged as (Proposed) under Operator or Antenna Make & Note: The 2 reference indicates the bottom of the antenna height above the main site level unless otherwise indicated. Effective Radiated Power (ERP) is Model.

Note: The 763MHz LTE technology is being added to existing antennas.

4 Emission Predictions

In the RF Exposure Simulations below, all heights are reflected with respect to main site level. In most rooftop cases this is the height of the main rooftop and in other cases this can be ground level. Each different height area, rooftop, or platform level is labeled with its height relative to the main site level. Emissions are calculated appropriately based on the relative height and location of that area to all antennas. The total analyzed elevations in the below RF Exposure Simulations are listed below.

- MAIN LEVEL = 0'
- PH1 and PH3 = 10'
- PH2 = 15'
- AT&T EQP = 2'

The Antenna Inventory heights are referenced to the same level.

(Feet) 0 17.9 35.8 www.sitesafe.com Site Name:GILL 1/24/2020 1:07:09 PM

0

Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

% of FCC Public Exposure Limit Spatial average 0' - 6'

0

Sitesafe OET-65 Model Near Field Boundary: 1.5 * Aperture Reflection Factor: 1 Spatially Averaged

5 Site Compliance

5.1 Site Compliance Statement

Upon evaluation of the cumulative RF emission levels from all operators at this site, RF hazard signage and antenna locations, Sitesafe has determined that:

AT&T Mobility, LLC will be compliant when the remediation recommended in Section 5.2 or other appropriate remediation is implemented.

Based on measurement or predictions, other wireless operators on this site may be out of RF exposure compliance with FCC regulations on this site. We recommend that those operators review this site with respect to RF exposure compliance.

The compliance determination is based on General Public RFE levels derived from theoretical modeling, RF signage placement, proposed antenna inventory and the level of restricted access to the antennas at the site. Any deviation from the AT&T Mobility, LLC proposed deployment plan could result in the site being rendered non-compliant.

Modeling is used for determining compliance and the percentage of MPE contribution.

5.2 Actions for Site Compliance

Based on FCC regulations, common industry practice, and our understanding of AT&T Mobility, LLC's RF Safety Policy requirements, this section provides a statement of recommendations for site compliance. Recommendations have been proposed based on our understanding of existing access restrictions, signage, and an analysis of predicted RFE levels.

AT&T Mobility, LLC will be made compliant if the following changes are implemented:

AT&T Mobility, LLC Proposed Alpha Sector Location

(2) Yellow Caution 2 sign(s) required one on each side of the sector.
Install a barrier that is 7' long, comprised of (1) segment(s) and an estimated
(2) stanchions, as depicted in the site scale map.

Install (1) total Caution 2 sign(s) on the proposed barrier stanchions.

7' segment: (1) Caution 2 sign(s)

AT&T Mobility, LLC Proposed Beta Sector Location

(2) Yellow Caution 2 sign(s) required one on each side of the sector.

Install a barrier that is 33' long, comprised of (3) segment(s) and an estimated (7) stanchions, as depicted in the site scale map.

Install (6) total Caution 2 sign(s) on the proposed barrier stanchions.

- 11' segment: (2) Caution 2 sign(s)
- 14' segment: (3) Caution 2 sign(s)
- 8' segment: (1) Caution 2 sign(s)

Install a barrier that is 4' long, comprised of (1) segment(s) and an estimated (2) stanchions, as depicted in the site scale map.

Install (1) total Caution 2 sign(s) on the proposed barrier stanchions.

• 4' segment: (1) Caution 2 sign(s)

AT&T Mobility, LLC Proposed Gamma Sector Location

(2) Red Warning 2 sign(s) required one on each side of the sector.
Install a barrier that is 6' long, comprised of (1) segment(s) and an estimated
(2) stanchions, as depicted in the site scale map.

Install (1) total Warning 2 sign(s) on the proposed barrier stanchions.

• 6' segment: (1) Warning 2 sign(s)

Install a barrier that is 8' long, comprised of (1) segment(s) and an estimated (2) stanchions, as depicted in the site scale map.

AT&T Proprietary (Internal use only). Not for use or disclosure outside the AT&T companles, except under written agreement. 😔 2019 AT&T Intellectual property. All rights reserved.

Install (1) total Warning 2 sign(s) on the proposed barrier stanchions.
8' segment: (1) Warning 2 sign(s)

AT&T Mobility, LLC is predicted to exceed 5% of the GP limit in an area near T-Mobile antennas #17, #18 and #19 that is predicted to exceed that limit and no signs or barriers are in place. AT&T Mobility, LLC should work with T-Mobile to ensure compliance at this location.

Install a barrier that is 14' long on the right side of T-Mobile's antennas #17, #18 and #19, comprised of (2) segment(s) and an estimated (3) stanchions, as depicted in the site scale map

Recommended per AT&T Mobility, LLC's Policy:

Site Access Location

Sitesafe recommends that all AT&T Mobility, LLC signage be removed from all access points, as they are not required by AT&T Mobility, LLC's signage policy.

Notes:

- Signage on the barriers should be placed on the stanchions no more than 8' apart from each other.
- Barriers were only recommended in areas predicted to exceed the General Public MPE limit greater than 6' from the unprotected roof edges.
 All other predicted to exceed areas are within 6' of the unprotected roof edges.
- Any existing signage that conflicts with the proposed signage in this report should be removed per AT&T Signage Posting Rules.
- Ensure all existing signage documented in this report still exist at the site, unless otherwise indicated.

Other Operator Antennas:

T-Mobile should review their Gamma sector.

6 **Reviewer** Certification

The reviewer whose signature appears below hereby certifies and affirms:

That I am an employee of Site Safe, LLC; in Vienna, Virginia, at which place the staff and I provide RF compliance services to clients in the wireless communications industry; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission (FCC) as well as the regulations of the Occupational Safety and Health Administration (OSHA), both in general and specifically as they apply to the FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields; and

That I have thoroughly reviewed this Site Compliance Report and believe it to be true and accurate to the best of my knowledge as assembled by and attested to by Leo Romero.

January 24, 2020

Anthony Handley

Appendix A – Statement of Limiting Conditions

Sitesafe has provided computer generated model(s) in this Site Compliance Report to show approximate dimensions of the site, and the model is included to assist the reader of the compliance report to visualize the site area, and to provide supporting documentation for Sitesafe's recommendations.

Sitesafe may note in the Site Compliance Report any adverse physical conditions, such as needed repairs, that Sitesafe became aware of during the normal research involved in creating this report. Sitesafe will not be responsible for any such conditions that do exist or for any engineering or testing that might be required to discover whether such conditions exist. Because Sitesafe is not an expert in the field of mechanical engineering or building maintenance, the Site Compliance Report must not be considered a structural or physical engineering report.

Sitesafe obtained information used in this Site Compliance Report from sources that Sitesafe considers reliable and believes them to be true and correct. Sitesafe does not assume any responsibility for the accuracy of such items that were furnished by other parties. When conflicts in information occur between data collected by Sitesafe provided by a second party and data collected by Sitesafe, the data will be used.

Appendix B – Regulatory Background Information

FCC Rules and Regulations

In 1996, the Federal Communications Commission (FCC) adopted regulations for evaluating the effects of RF emissions in 47 CFR § 1.1307 and 1.1310. The guideline from the FCC Office of Engineering and Technology is Bulletin 65 ("OET Bulletin 65"), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, Edition 97-01, published August 1997. Since 1996, the FCC periodically reviews these rules and regulations as per their congressional mandate.

FCC regulations define two separate tiers of exposure limits: Occupational or "Controlled environment" and General Public or "Uncontrolled environment". The General Public limits are generally five times more conservative or restrictive than the Occupational limit. These limits apply to accessible areas where workers or the general public may be exposed to Radio Frequency (RF) electromagnetic fields.

Occupational or Controlled limits apply in situations in which persons are exposed as a consequence of their employment and where those persons exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

An area is considered a Controlled environment when access is limited to these aware personnel. Typical criteria are restricted access (i.e. locked or alarmed doors, barriers, etc.) to the areas where antennas are located coupled with proper RF warning signage. A site with Controlled environments is evaluated with Occupational limits.

All other areas are considered Uncontrolled environments. If a site has no access controls or no RF warning signage it is evaluated with General Public limits.

The theoretical modeling of the RF electromagnetic fields has been performed in accordance with OET Bulletin 65. The Maximum Permissible Exposure (MPE) limits utilized in this analysis are outlined in the following diagram:

FCC Limits for Maximum Permissible Exposure (MPE) Plane-wave Equivalent Power Density

Limits for Occupational/Controlled Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (E)	Magnetic Field Strength	Power Density (S) (mW/cm²)	Averaging Time E ², H ² or S (minutes)
	(V/m)	(H) (A/m)		
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f²)*	6
30-300	61.4	0.163	1.0	6
300-1500	22		f/300	6
1500-	÷.		5	6
100.000				

Limits for General Population/Uncontrolled Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (E) (V/m}	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f ²)*	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-			1.0	30
100,000				
f = frequ	ency in MHz	*Plane-w	vave equivale	nt power density

OSHA Statement

The General Duty clause of the OSHA Act (Section 5) outlines the occupational safety and health responsibilities of the employer and employee. The General Duty clause in Section 5 states:

(a) Each employer –

- shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees;
- (2) shall comply with occupational safety and health standards promulgated under this Act.
- (b) Each employee shall comply with occupational safety and health standards and all rules, regulations, and orders issued pursuant to this Act which are applicable to his own actions and conduct.

OSHA has defined Radiofrequency and Microwave Radiation safety standards for workers who may enter hazardous RF areas. Regulation Standards 29 CFR § 1910.147 identify a generic Lockout/Tagout procedure aimed to control the unexpected energization or startup of machines when maintenance or service is being performed.

Appendix C – Safety Plan and Procedures

The following items are general safety recommendations that should be administered on a site by site basis as needed by the carrier.

General Maintenance Work: Any maintenance personnel required to work immediately in front of antennas and / or in areas indicated as above 100% of the Occupational MPE limits should coordinate with the wireless operators to disable transmitters during their work activities.

<u>Training and Qualification Verification</u>: All personnel accessing areas indicated as exceeding the General Population MPE limits should have a basic understanding of EME awareness and RF Safety procedures when working around transmitting antennas. Awareness training increases a worker's understanding to potential RF exposure scenarios. Awareness can be achieved in a number of ways (e.g. videos, formal classroom lecture or internet-based courses).

Physical Access Control: Access restrictions to transmitting antennas locations is the primary element in a site safety plan. Examples of access restrictions are as follows:

- Locked door or gate
- Alarmed door
- Locked ladder access
- Restrictive Barrier at antenna (e.g. Chain link with posted RF Sign)

<u>RF Signage</u>: Everyone should obey all posted signs at all times. RF signs play an important role in properly warning a worker prior to entering into a potential RF Exposure area.

Assume all antennas are active: Due to the nature of telecommunications transmissions, an antenna transmits intermittently. Always assume an antenna is transmitting. Never stop in front of an antenna. If you have to pass by an antenna, move through as quickly and safely as possible thereby reducing any exposure to a minimum.

<u>Maintain a 3-foot clearance from all antennas</u>: There is a direct correlation between the strength of an EME field and the distance from the transmitting antenna. The further away from an antenna, the lower the corresponding EME field is.

Site RF Emissions Diagram(s): Section 4 of this report contains RF Diagram(s) that outline various theoretical Maximum Permissible Exposure (MPE) areas at the site. The modeling is a worst-case scenario assuming a duty cycle of 100% for each transmitting antenna at full power. This analysis is based on one of two access control criteria: General Public criteria means the access to the site is uncontrolled and anyone can gain access. Occupational criteria means the access to the antenna locations.

Appendix D – RF Emissions

The RF Emissions Simulation(s) in this report display theoretical spatially averaged percentage of the Maximum Permissible Exposure for all systems at the site unless otherwise noted. These diagrams use modeling as prescribed in OET Bulletin 65 and assumptions detailed in Appendix E.

The key at the bottom of each RF Emissions Simulation indicates percentages displayed referenced to FCC General Public Maximum Permissible Exposure (MPE) limits. Color coding on the diagram is as follows:

- Areas indicated as Gray are predicted to be below 5% of the MPE limits. Gray represents areas more than 20 times below the most conservative exposure limit. Gray areas are accessible to anyone.
- Green represents areas are predicted to be between 5% and 100% of the MPE limits. Green areas are accessible to anyone.
- Blue represents areas predicted to exceed the General Public MPE limits but are less than Occupational limits. Blue areas should be accessible only to RF trained workers.
- Yellow represents areas predicted to exceed Occupational MPE limits. Yellow areas should be accessible only to RF trained workers able to assess current exposure levels.
- Red represents areas predicted to have exposure more than 10 times the Occupational MPE limits. Red indicates that the RF levels must be reduced prior to access. An RF Safety Plan is required which outlines how to reduce the RF energy in these areas prior to access.

If trained occupational personnel require access to areas that are delineated as above 100% of the limit, Sitesafe recommends that they utilize the proper personal protection equipment (RF monitors), coordinate with the carriers to reduce or shutdown power, or make real-time power density measurements with the appropriate power density meter to determine real-time MPE levels. This will allow the personnel to ensure that their work area is within exposure limits.

Appendix E – Assumptions and Definitions

General Model Assumptions

In this site compliance report, it is assumed that all antennas are operating at **full power at all times**. Software modeling was performed for all transmitting antennas located on the site. Sitesafe has further assumed a 100% duty cycle and maximum radiated power.

The modeling is based on recommendations from the FCC's OET-65 bulletin with the following variances per AT&T guidance. Reflection has not been considered in the modeling, i.e. the reflection factor is 1.0. The near / far field boundary has been set to 1.5 times the aperture height of the antenna and modeling beyond that point is the lesser of the near field cylindrical model and the far field model taking into account the gain of the antenna.

The site has been modeled with these assumptions to show the maximum RF energy density. Areas modeled with exposure greater than 100% of the General Public MPE level may not actually occur but are shown as a prediction that could be realized. Sitesafe believes these areas to be safe for entry by occupationally trained personnel utilizing appropriate personal protective equipment (in most cases, a personal monitor).

Use of Generic Antennas

For the purposes of this report, the use of "Generic" as an antenna model, or "Unknown" for an operator means the information about a carrier, their FCC license and/or antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use our industry specific knowledge of equipment, antenna models, and transmit power to model the site. If more specific information can be obtained for the unknown measurement criteria, Sitesafe recommends remodeling of the site utilizing the more complete and accurate data. Information about similar facilities is used when the service is identified and associated with a particular antenna. If no information is available regarding the transmitting service associated with an unidentified antenna, using the antenna manufacturer's published data regarding the antenna's physical characteristics makes more conservative assumptions.

Where the frequency is unknown, Sitesafe uses the closest frequency in the antenna's range that corresponds to the highest Maximum Permissible Exposure (MPE), resulting in a conservative analysis.

Appendix F – Definitions

5% Rule – The rules adopted by the FCC specify that, in general, at multiple transmitter sites actions necessary to bring the area into compliance with the guidelines are the shared responsibility of all licensees whose transmitters produce field strengths or power density levels at the area in question in excess of 5% of the exposure limits. In other words, any wireless operator that contributes 5% or greater of the MPE limit in an area that is identified to be greater than 100% of the MPE limit is responsible for taking corrective actions to bring the site into compliance.

Compliance – The determination of whether a site complies with FCC standards with regards to Human Exposure to Radio Frequency Electromagnetic Fields from transmitting antennas.

Decibel (dB) – A unit for measuring power or strength of a signal.

Duty Cycle – The percent of pulse duration to the pulse period of a periodic pulse train, Also, may be a measure of the temporal transmission characteristic of an intermittently transmitting RF source such as a paging antenna by dividing average transmission duration by the average period for transmission. A duty cycle of 100% corresponds to continuous operation.

Effective (or Equivalent) Isotropic Radiated Power (EIRP) – The product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna.

Effective Radiated Power (ERP) – The product of the power supplied to the antenna and the antenna gain in a given direction relative to a half-wave dipole antenna.

Gain (of an antenna) – The ratio of the maximum power in a given direction to the maximum power in the same direction from an isotropic radiator. Gain is a measure of the relative efficiency of a directional antenna as compared to an omnidirectional antenna.

General Population/Uncontrolled Environment – Defined by the FCC as an area where RF exposure may occur to persons who are **unaware** of the potential for exposure and who have no control over their exposure. General Population is also referenced as General Public.

Generic Antenna – For the purposes of this report, the use of "Generic" as an antenna model means the antenna information was not provided and could not be obtained while on site. In the event of unknown information, Sitesafe will use its industry specific knowledge of antenna models to select a worst-case scenario antenna to model the site.

Isotropic Antenna – An antenna that is completely non-directional. In other words, an antenna that radiates energy equally in all directions.

Maximum Measurement – This measurement represents the single largest measurement recorded when performing a spatial average measurement.

Maximum Permissible Exposure (MPE) – The rms and peak electric and magnetic field strength, their squares, or the plane-wave equivalent power densities associated with these fields to which a person may be exposed without harmful effect and with acceptable safety factor.

Occupational/Controlled Environment – Defined by the FCC as an area where RF exposure may occur to persons who are **aware** of the potential for exposure as a condition of employment or specific activity and can exercise control over their exposure.

OET Bulletin 65 – Technical guideline developed by the FCC's Office of Engineering and Technology to determine the impact of RF exposure on humans. The guideline was published in August 1997.

OSHA (Occupational Safety and Health Administration) – Under the Occupational Safety and Health Act of 1970, employers are responsible for providing a safe and healthy workplace for their employees. OSHA's role is to promote the safety and health of America's working men and women by setting and enforcing standards; providing training, outreach and education; establishing partnerships; and encouraging continual process improvement in workplace safety and health. For more information, visit www.osha.gov.

Radio Frequency Exposure or Electromagnetic Fields – Electromagnetic waves that are propagated from antennas through space.

Spatial Average Measurement – A technique used to average a minimum of ten (10) measurements taken in a ten (10) second interval from zero (0) to six (6) feet. This measurement is intended to model the average energy a 6-foot tall human body will absorb while present in an electromagnetic field of energy.

Transmitter Power Output (TPO) – The radio frequency output power of a transmitter's final radio frequency stage as measured at the output terminal while connected to a load.

Appendix G – References

The following references can be followed for further information about RF Health and Safety.

Site Safe, LLC http://www.sitesafe.com FCC Radio Frequency Safety http://www.fcc.gov/encyclopedia/radio-frequency-safety National Council on Radiation Protection and Measurements (NCRP) http://www.ncrponline.org Institute of Electrical and Electronics Engineers, Inc., (IEEE) http://www.ieee.org American National Standards Institute (ANSI) http://www.ansi.org Environmental Protection Agency (EPA) http://www.epa.gov/radtown/wireless-tech.html National Institutes of Health (NIH) http://www.niehs.nih.gov/health/topics/agents/emf/ Occupational Safety and Health Agency (OSHA) http://www.osha.gov/SLTC/radiofrequencyradiation/ International Commission on Non-Ionizing Radiation Protection (ICNIRP) http://www.icnirp.org World Health Organization (WHO) http://www.who.int/peh-emf/en/ National Cancer Institute http://www.cancer.gov/cancertopics/factsheet/Risk/cellphones American Cancer Society (ACS) http://www.cancer.org/docroot/PED/content/PED_1_3X_Cellular_Phone_Towers.asp?sit earea=PED European Commission Scientific Committee on Emerging and Newly Identified Health Risks http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr o 022.pdf Fairfax County, Virginia Public School Survey http://www.fcps.edu/fts/safety-security/RFEESurvey/ UK Health Protection Agency Advisory Group on Non-Ionizing Radiation

http://www.hpa.org.uk/webw/HPAweb&HPAwebStandard/HPAweb C/1317133826368 Norwegian Institute of Public Health http://www.fhi.no/dokumenter/545eeg7147.pdf

AT&T Proprietary (Internal use only). Not for use or disclosure outside the AT&T companies, except under written agreement, @2019 AT&T Intellectual property. All rights reserved

Favorable Propagation

Trylon

Prepared For

Structural Analysis

Steven Uecke, P.E. MD P.E. License No. 42852 Date: 02-28-20 Expires: 11-28-20 GILL 02/28/20 PASS (44.6%)

TABLE OF CONTENT

STRUCTURAL ANALYSIS REPORT	2
Standard Conditions	4
Structural Calculations	5
Codes and Standards	6
Equipment Platform Analysis	7
Wind Load on Equipment	7
3-D View	9
Node Numbers	10
Member Labels	11
Member Shapes	12
Dead Load	13
Live Load	14
Ex. Equipment Load	15
Proposed Equipment Load	16
Wind Load x-direction	17
Wind Load z-direction	18
Member Stress Ration	19
Analysis Report	20
References	24
Construction Drawing by Trylon dated 01/21/2020	25
Previous construction drawings prepared by BC Architects Engineers dated 01/13/2011	27

STRUCTURAL ANALYSIS REPORT

SMARTLINK

1362 Mellon Road, Suite 140 Hanover, MD 21076

Attention: Nathan Lenig

Reference: Roof Frame Analysis – Engineering Assessment, located at 9727 Mount Pisgah Road, Silver Spring, MD 20903.

Trylon Job No.:	157156
AT&T Site Name:	GILL
AT&T Site FA#:	10128448
Site Address:	9727 Mount Pisgah Road, Silver Spring, MD 20903
Tower Profile:	Rooftop

Dear Nathan Lenig:

We have been provided with RF information for above-referenced site. AT&T is proposing to add new equipment to the existing equipment platform.

A revised equipment schematic has been provided to us. We have been asked to evaluate this information to determine whether or not the existing roof framing supporting the equipment platform is structurally adequate to safely support the proposed loading changes. The structural evaluation refers to the equipment cabinet installed at the existing rooftop equipment platform located at 9727 Mount Pisgah Road, Silver Spring, MD 20903.

The proposed changes were provided to us in scope of work Trylon drawing package dated 01/21/2020. The equipment platform is located at **133-ft 6-in** elevation. The existing equipment platform framing was verified for the loading from the proposed new and existing equipment cabinet.

The existing platform framing information that we considered in our evaluation is based on the previous construction drawings prepared by "BC Architects Engineers" dated 01/13/2011. The structural members that we considered in our analysis are presented in the attached sketches.

We consider that the existing equipment platform framing is in "like new" condition without cracks or deteriorated parts.

Proposed Equipment Cabinet:

Status	Equipment Cabinet	Qty.	Weight (lbs)
Proposed	NETXTEND Battery Cabinet	1	2610.0
Toposea	DC12	3	56.3
Existing	TE41 Cabinet	1	847.0
	9412 Cabinet	1	230.0
	UMTS Cabinet	1	1200.0
	FLEX Cabinet	1	600.0*

* Weight assumed

CONCLUSIONS AND RECOMMENDATIONS

Based on information provided, our calculations conclude that the existing equipment platform supporting the proposed new and existing equipment cabinet located at **133-ft 6-in** elevation of the Rooftop at the specified address, are **STRUCTURALLY ADEQUATE** to safely support the proposed equipment, subject to the attached Standard Conditions on page 4. The proposed new addition replaces the similar weight in the equipment and the existing roof frame supporting the equipment platform shall be structurally adequate.

Should you have any questions, comments or require additional information, please do not hesitate to call.

Sincerely,

Analysis performed by:

Ashraful Alam, PhD, PE

Standard Conditions for Providing Structural Consulting Services on Existing Structures

- 1. Roof structure is analyzed to the best of our ability using all information that is provided or can be obtained during fieldwork (if authorizes by client). If the existing conditions are not as we have represented in this analysis, we should be contacted to evaluate the significance of the deviation and revise the assessment accordingly.
- 2. The structural analysis has been performed assuming that existing roof slab is in "like new" condition. No allowance was made for excessive corrosion, damaged or missing structural members, loose bolts, misaligned parts, or any reduction in strength due to the age or fatigue of the product.
- 3. The structural analysis provided is an assessment of the primary load carrying capacity of the structure. We provide a limited scope of service. In some cases, we cannot verify the capacity of every structural parameter. In some cases, structural fabrication details are unknown at the time of our analysis, and the detailed field measurement of some of the required details may not be possible. In instances where we cannot perform connection capacity calculations, it is assumed that the existing manufactured connections develop the full capacity of the primary members being connected.
- 4. We cannot be held responsible for temporary and unbalanced loads on the roof structure. Our analysis is based on a particular loading arrangement or as-built field condition. We are not responsible for the methods and means of how the loading arrangement is accomplished by the contractor. These methods and means may include rigging of equipment or hardware to lift and locate, temporary hanging of equipment in locations other than the final arrangement, movement and tie off of tower riggers, personnel, and their equipment, etc.

Structural Calculations

	Project Name		Project Numb	ber
😻 Trylon	10128448: GILL Section		157156 Page	
	STANDARDS AND EQU	PMENT LATERAL LOAD 6		
Trylon TSF, Inc.	Ckd. by	Date	Calc. by	Date
	AA		AA	02/28/2020
Applicable Codes and Refere	1005.			
2015 International Building Cod	e			
ASCE 7-10 Minimum Desian Lo	ads for Buildings and Other St	ructures		
AISC Steel Construction Manua	I Fourteenth Edition			
Load Combinations (IBC 2015	LRFD):			
$\begin{array}{lll} 1.4(D+F) \\ 1.2(D+F)+1.6(L+H)+(0) \\ 1.2(D+F)+1.6(L_r \mbox{ or } S \mbox{ or } S \mbox{ or } 1.2(D+F)+1.0W+f_1L+1 \\ 1.2(D+F)+1.0E+f_1L+1 \\ 0.9D+1.0W+1.6H \\ 0.9(D+F)+1.0E+1.6H \end{array}$	0.5(L _r or S or R) R) + 1.6H + (f ₁ L or 0.5W) 1.6H + 0.5(L _r or S or R) .6H + f ₂ S	(Eq. 16-1) (Eq. 16-2) (Eq. 16-3) (Eq. 16-4) (Eq. 16-5) (Eq. 16-6) (Eq. 16-7)		
Load Combinations (IBC 2015	ASD):			
 D + F D + H + F + L D + H + F + (Lr or S or R) D + H + F + 0.75(L) + 0.75 D + H + F + (0.6W or 0.7E) D + H + F + 0.75(0.6W) + D + H + F + 0.75(0.7E) + (0.6D + 0.6W + H) 	5(L _r or S or R) ;) 0.75L + 0.75(L _r or S or R) 0.75L + 0.75S	(Eq. 16-8) (Eq. 16-9) (Eq. 16-10) (Eq. 16-11) (Eq. 16-12) (Eq. 16-13) (Eq. 16-14) (Eq. 16-15)		

0.6(D + F) + 0.7E + H•

Notations:

- D = Dead load of structure and appurtenances, excluding guy assemblies ٠
- F = Load due to fluids with well-defined pressures and maximum heights ٠
- L = Floor live load •
- H = Load due to lateral earth pressures, ground water pressure or pressure of bulk materials ٠
- L_r = Roof live load •
- R = Rain load ٠
- S = Snow load
- W = Load due to wind pressure •
- E = Combined effect of horizontal and vertical earthquake induced forces ٠
- $f_1 = 1$ for floors in places of public assembly in excess of 100 pounds per square foot, and = 0.5 for other live loads ٠
- $f_2 = 0.7$ for roof configurations that do not shed snow off the structure, and = 0.2 for other roof configurations ٠

••••••••	Project Name			Project Numl	ber	
🔅 Trylon	SILL		157156			
Section				Page	Page	
Thulon TOE Jac	STANDARD	STANDARDS AND EQUIPMENT LATERAL LOAD				
Tryion TSF, Inc.	Ckd. by		Date	Calc. by	Date	
	AA			AA	02/28/20	
WIND LOAD ON EQUIPMENT						
ASCE 7-10: Section 29.5.1		V = 115 mpb				
Basic willu speeu		v = 115 mpn				
Velocity pressure exponent coef	(Table 26 6-1)	" K⊣ – 0.85				
Exposure category (Sect. 2.6.5)	(12010-20.0-1)	Ra = 0.05				
Height of building		b – 136 50 ft				
Topography factor not significant	(Sect 266)	$K_{-1} = 1.00$				
Nominal height of atmospheric h	oundary laver	$7_{21} = 1.00$				
3-second quet wind enced nowe	r law exponent	$\alpha = 9.5$				
Terrain constant		ω = 0.0 K ₀ = 1.00				
		$K_{min} = mav(2)$	$11 \times (7/7_{\alpha}) \wedge (2/\alpha) = 0.85) =$	1 351		
Velocity pressure coefficient (Sect. $2.6.5.2$)		$h_{zmin} - max(z, 0) + (z/zg) (z/\alpha), (0.05) = 1.551$ $K_z - min(K_{rmin} - 2.01) - 1.351$				
Velocity pressure coefficient (Sect. 2.0.5.2)		$R_z = 0.00256 \times K_z \times K_z \times K_z \times V^2 \times 1 \text{ nsf/mnh}^2 = 38.887 \text{ nsf}$				
velocity pressure		qn = 0.00230 ×		mpn – 30.001 psr		
NETXTEND Cabinet						
Length of equipment		$L_1 = 3.1 \text{ ft}$				
Width of equipment		W ₁ =3.0 ft				
Height of equipment		$H_1 = 6.0 \text{ ft}$				
Vertical projected area normal to	wind	$A_{f1x} = L_1 \times H_1 =$	= 18.600 ft ²			
Vertical projected area Transver	se to wind	$A_{f1z} = W_1 \times H_1$	= 18.000 ft ²			
Horizontal projected area norma	to wind	$A_{r1} = L_1 \times W_1 =$	9.300 ft ²			
TE41 Cabinet						
Length of equipment		L ₂ = 3.33 ft				
Width of equipment		W ₂ =3.0 ft				
Height of equipment		$H_2 = 6.17 \text{ ft}$				
Vertical projected area normal to	wind	$A_{f2x} = L_2 \times H_2 =$	= 20.546 ft ²			
Vertical projected area Transver	se to wind	$A_{f2z} = W_2 \times H_2$	= 18.510 ft ²			
Horizontal projected area norma	to wind	$A_{r2} = L_2 \times W_2 =$	= 9.990 ft ²			
UMTS Cabinet						
Length of equipment		L ₃ = 2.6 ft				
Width of equipment		W ₃ =2.5 ft				
Height of equipment		$H_3 = 7.4 \text{ ft}$				
Vertical projected area normal to	wind	$A_{f3x} = L_3 \times H_3 =$	= 19.240 ft ²			
Vertical projected area Transver	se to wind	$A_{f3z} = W_3 \times H_3$	= 18.500 ft ²			
Horizontal projected area norma	to wind	$A_{r3} = L_3 \times W_3 =$	6.500 ft ²			
Horizontal projected area norma	to wind	$A_{r4} = L_4 \times W_4 =$	4.367 ft ²			
Wind force (Normal and Trans	verse)					
Pressure coefficient		GCf = 1.9				
Lateral force due to wind (N-dire	ction)	$F_{h1x} = max(16)$	psf, $q_h \times GC_f$) × $A_{f1x} = 13$	74.273 lb		

	Project Name	Project Number		
🐞 Trylon	Trylon 10128448: GILL		157156	
	Section	Page		
Trylon TSE Inc	STANDARDS AND EQUIPME	8		
	Ckd. by	Date	Calc. by	Date
	AA		AA	02/28/2020

Lateral force due to wind (N-direction) Lateral force due to wind (T-direction) Lateral force due to wind (N-direction) Lateral force due to wind (T-direction)
$$\begin{split} F_{h2x} &= max(16 \text{ psf}, \, q_h \times GC_f) \times A_{f2x} = \textbf{1518.062} \text{ lb} \\ F_{h2z} &= max(16 \text{ psf}, \, q_h \times GC_f) \times A_{f2z} = \textbf{1367.623} \text{ lb} \\ F_{h3x} &= max(16 \text{ psf}, \, q_h \times GC_f) \times A_{f3x} = \textbf{1421.560} \text{ lb} \end{split}$$

 $F_{h3z} = max(16 \text{ psf}, q_h \times GC_f) \times A_{f3z} = \textbf{1366.884} \text{ lb}$

Loads: BLC 4, WLZ Envelope Only Solution		
1 Total Construction 1		Page - 9
Iryion		
AA	Gill	Feb 4, 2020 at 2:30 PM

Loads: BLC 4, WLZ Envelope Only Solution	the the trace of t	Material Sets Agg Agg Agg Agg Agg Agg Agg Agg Agg Ag
Trylon		Page - 11
AA	Gill	Feb 4, 2020 at 2:32 PM
167166	 	AT&T Gill Equipment Platform r2d
157156	Member Labels	AI&T_Gill_Equipment Platform.r3d

Loads: BLC 4, Envelope Only	WLZ Solution	Maria Mari Maria Maria Mari	Aserial Sets Rigid Aserial Ase Gr.36
		1	1 ayo - 12
		-	
AA		Gill	Feb 4, 2020 at 2:32 PM

Lister BLC 1. D	
Envelope Only Solution	Dara 10
Trylon	Page - 13
AA Gill	Feb 4, 2020 at 2:32 PM
157156 Dead Load	AT&T_Gill_Equipment Platform.r3d

-SOPST	-60psf -6	
Loads: BLC 2, LL Envelope Only Solution Trylon		Page - 14
Loads: BLC 2, LL Envelope Only Solution Trylon AA	Gill	Page - 14 Feb 4, 2020 at 2:33 PM
Loads: BLC 2, LL Envelope Only Solution Trylon AA	Gil	Page - 14 Feb 4, 2020 at 2:33 PM

	- Sold and a sold and	
Loads: BLC 5, EX. EQ Envelope Only Solution		
Trvlon		Page - 15
ΔΔ	Gill	Feb 6, 2020 at 3:31 DM
157156		AT&T Gill Equipment Platform r2d
15/156	Ex. Equipment Load	ATAI_GIII_Equipment Platform.r3d

Loads: BLC 6, NEW EQ Envelope Only Solution		
		Page - 16
		Fage - 10
AA	Gill	Feb 6, 2020 at 3:31 PM
157156	New Equipment Load	AT&T_Gill_Equipment Platform.r3d

Loads: BLC 3, WLX Envelope Only Solution		
		Page - 17
		Faye - 17
AA 457450		TED 28, 2020 AT 10:26 AM
157156	Wind Load x-direction	AI&I_GIII_Equipment Platform.r3d

Loads: BLC 4, Envelope Only	WLZ Solution	1374b 1519b 1519b	
Trylon			Page - 18
		Gill	Feb 28, 2020 at 10:27 AM
157156		Wind Load z-direction	AT&T Gill Equipment Platform r3d
157156		Wind Load z-direction	AI&I_GIII_Equipment Platform.r3d
TrylonPage - 19AAGillFeb 28, 2020 at 10:27 AM157156Member Stress RatioAT&T_Gill_Equipment Platform.r3d	Member Code Checks Displayed (Enve		Code Check (Env) 90-10 7-5-90 0-50
--	------------------------------------	---------------------	--
Fage - 19AAGillFeb 28, 2020 at 10:27 AM157156Member Stress RatioAT&T_Gill_Equipment Platform.r3d	Envelope Only Solution		Page - 19
AA Gill Feb 28, 2020 at 10:27 AM 157156 Member Stress Ratio AT&T_Gill_Equipment Platform.r3d			Faye - 19
157156 Member Stress Ratio AT&T_Gill_Equipment Platform.r3d	AA	GIII	rep 28, 2020 at 10:27 AM
	157156	Member Stress Ratio	AT&T_Gill_Equipment Platform.r3d

Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
1	N1	Ō	Ō	Ū.	Ó	
2	N2	192	0	0	0	
3	N3	0	0	140	0	
4	N4	192	0	140	0	
5	N5	256	0	0	0	
6	N6	256	0	137	0	
7	N7	216	0	140	0	
8	N8	210	0	140	0	
9	N9	204	0	140	0	
10	N10	198	0	140	0	
11	N11	192	0	137	0	
12	N12	216	0	137	0	
13	N13	210	0	137	0	
14	N14	204	0	137	0	
15	N15	198	0	137	0	
16	N16	12	0	0	0	
17	N17	12	0	140	0	
18	N18	180	0	0	0	
19	N19	180	0	140	0	
20	N20	12	0	40	0	
21	N21	180	0	40	0	
22	N22	12	0	100	0	
23	N23	180	0	100	0	
24	N24	219	0	0	0	
25	N25	219	0	137	0	
26	N26	256	0	68.5	0	
27	N27	219	0	68.5	0	
28	N28	180	0	68.5	0	
29	N29	60	0	40	0	
30	N30	90	0	40	0	
31	N31	60	0	100	0	
32	N32	90	0	100	0	
33	N33	120	0	40	0	
34	N34	60	36	40	0	
35	N35	90	36	40	0	
36	N36	60	36	100	0	
37	N37	90	36	100	0	
38	N38	120	36	40	0	

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N1	N5		W16x26	Beam	Wide Flange	A992	Typical
2	M2	N3	N7		W16x26	Beam	Wide Flange	A992	Typical
3	M3	N11	N6		C12x20.7	Beam	Channel	A36 Gr.36	Typical
4	M4	N4	N11		RIGID	None	None	RIGID	Typical
5	M5	N10	N15		RIGID	None	None	RIGID	Typical
6	M6	N9	N14		RIGID	None	None	RIGID	Typical
7	M7	N8	N13		RIGID	None	None	RIGID	Typical
8	M8	N7	N12		RIGID	None	None	RIGID	Typical
9	M9	N17	N16		W8x18	Beam	Wide Flange	A992	Typical
10	M10	N19	N18		W8x18	Beam	Wide Flange	A992	Typical
11	M11	N20	N21		W8x21	Beam	Wide Flange	A992	Typical
12	M12	N22	N23		W8x21	Beam	Wide Flange	A992	Typical
13	M13	N6	N5		W12x26	Beam	Wide Flange	A992	Typical
14	M14	N25	N24		W8x18	Beam	Wide Flange	A992	Typical
15	M15	N28	N27		W8x18	Beam	Wide Flange	A992	Typical
16	M16	N27	N26		W8x18	Beam	Wide Flange	A992	Typical
17	M17	N31	N36		RIGID	None	None	RIGID	Typical
18	M18	N32	N37		RIGID	None	None	RIGID	Typical
19	M19	N29	N34		RIGID	None	None	RIGID	Typical
20	M20	N30	N35		RIGID	None	None	RIGID	Typical
21	M21	N33	N38		RIGID	None	None	RIGID	Typical

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	[Lcomp bot[in]	L-torqu	Kyy	Kzz	Cb	Function
1	M1	W16x26	256	6	6	Lbyy						Lateral
2	M2	W16x26	216			Lbyy						Lateral
3	M3	C12x20.7	64			Lbyy						Lateral
4	M9	W8x18	140			Lbyy						Lateral
5	M10	W8x18	140			Lbyy						Lateral
6	M11	W8x21	168			Lbyy						Lateral
7	M12	W8x21	168			Lbyy						Lateral
8	M13	W12x26	137			Lbyy						Lateral
9	M14	W8x18	137			Lbyy						Lateral
10	M15	W8x18	39			Lbyy						Lateral
11	M16	W8x18	37			Lbyy						Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	DL	DĹ	-	-1	-				7	
2	LL	LL							7	
3	WLX	WLX				2				
4	WLZ	WLZ				3				
5	EX. EQ	DL				4				
6	NEW EQ	DL				2				
7	BLC 1 Transient Area	None						22		
8	BLC 2 Transient Area	None						22		

Joint Loads and Enforced Displacements (BLC 3 : WLX)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/
1	N34	L	Х	1329
2	N37	L	Х	1368

Joint Loads and Enforced Displacements (BLC 4 : WLZ)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/
1	N34	L	Z	1374
2	N35	L	Z	1519
3	N38	L	Z	1519

Joint Loads and Enforced Displacements (BLC 5 : EX. EQ)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/
1	N35	L	Y	-847
2	N38	L	Y	-1200
3	N36	L	Y	-600
4	N37	L	Y	-230

Joint Loads and Enforced Displacements (BLC 6 : NEW EQ)

	Joint Label	L,D,M	Direction	Magnitude[(lb,k-ft), (in,rad), (lb*s^2/
1	N34	L	Y	-2610
2	N22	L	Y	-168.9

Member Area Loads (BLC 1 : DL)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	N17	N22	N23	N19	Y	A-B	-15
2	N20	N22	N23	N21	Y	A-B	-15
3	N16	N20	N21	N18	Y	A-B	-15
4	N28	N27	N25	N19	Y	A-B	-15
5	N28	N27	N24	N18	Y	A-B	-15
6	N25	N6	N26	N27	Y	A-B	-15
7	N27	N26	N5	N24	Y	A-B	-15

Member Area Loads (BLC 2 : LL)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[psf]
1	N17	N22	N23	N19	Y	A-B	-60
2	N20	N22	N23	N21	Y	A-B	-60
3	N16	N20	N21	N18	Y	A-B	-60
4	N28	N27	N25	N19	Y	A-B	-60
5	N28	N27	N24	N18	Y	A-B	-60
6	N25	N6	N26	N27	Y	A-B	-60
7	N27	N26	N5	N24	Y	A-B	-60

Load Combinations

	Description Sol	PD	.SR	BLC	Fact	.BLC	Fact	BLC	Fact	.BLC	Fact	BLC	Fact	BLC	Fact	BLC	Fact	.BLC	Fact	BLC	Fact	BLC	Fact
1	IBC 16-1 Yes	Υ		DL	1.4																		
2	IBC 16-2 (a) Yes	Υ		DL	1.2	LL	1.6	LLS	1.6														
3	IBC 16-3 (Yes	Υ		DL	1.2	W	.5																
4	IBC 16-3 (Yes	Υ		DL	1.2	WLZ	.5																
5	IBC 16-3 (Yes	Υ		DL	1.2	W	5																
6	IBC 16-3 (Yes	Υ		DL	1.2	WLZ	5																
7	IBC 16-4 (Yes	Υ		DL	1.2	W	1	LL	.5	LLS	1												
8	IBC 16-4 (Yes	Υ		DL	1.2	WLZ	1	LL	.5	LLS	1												
9	IBC 16-4 (Yes	Υ		DL	1.2	W	-1	LL	.5	LLS	1												
10	IBC 16-4 (Yes	Υ		DL	1.2	WLZ	-1	LL	.5	LLS	1												
11	IBC 16-6 (a) Yes	Υ		DL	.9	W	1																
12	IBC 16-6 (b) Yes	Υ		DL	.9	WLZ	1																
13	IBC 16-6 (c) Yes	Υ		DL	.9	W	-1																
14	IBC 16-6 (d) Yes	Y		DL	.9	WLZ	-1																

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N3	max	Ō	1	6608.953	2	63.057	8	Ō	1	.056	10	8.587	2
2		min	0	1	1897.057	11	-62.549	10	0	1	056	8	2.429	11
3	N2	max	0	1	12573.636	2	36.246	8	0	1	.025	8	-1.887	13
4		min	0	1	3264.065	13	-33.354	10	0	1	024	10	-3.865	2
5	N1	max	1108.183	9	6854.898	2	0	1	0	1	.001	10	0	1
6		min	-1055.206	11	2394.906	11	0	1	0	1	001	8	0	1
7	N4	max	1192.525	9	10967.955	2	0	1	.891	2	.11	11	0	1
8		min	-1125.377	11	2352.354	13	0	1	.182	11	115	9	0	1
9	N36	max	72.159	13	0	1	8.286	2	0	1	0	1	0	1
10		min	-151.227	7	0	1	2.816	11	0	1	0	1	0	1
11	N37	max	110.693	13	0	1	4.791	2	0	1	0	1	0	1
12		min	-106.848	7	0	1	1.31	13	0	1	0	1	0	1
13	N34	max	22.085	13	0	1	1431.701	10	0	1	0	1	0	1
14		min	-254.171	7	0	1	-1442.759	8	0	1	0	1	0	1
15	N35	max	88.845	13	0	1	1550.559	10	0	1	0	1	0	1
16		min	-101.013	7	0	1	-1551.917	8	0	1	0	1	0	1
17	N38	max	200.464	9	0	1	1517.385	10	0	1	0	1	0	1
18		min	-1.266	11	0	1	-1525.004	8	0	1	0	1	0	1
19	Totals:	max	2697	9	37005.443	2	4412	10						
20		min	-2697	11	10758.835	11	-4412	8						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code C	.Loc[in]	LC	Shear	Loc[in]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y	.phi*Mn zCb	Eqn
1	M1	W16x26	.262	192	2	.085	192	y	2	105423.4	345600	20.55	59.959 1	H1-1b
2	M2	W16x26	.081	191.25	2	.069	191.25	y	2	46435.588	345600	20.55	139.651 3	H1-1b
3	M3	C12x20.7	.079	0	2	.066	24	y	2	140262.4	196992	7.438	69.12 1	H1-1b
4	M9	W8x18	.409	99.167	2	.112	140	y	2	91863.311	236700	17.475	50.708 1	H1-1b
5	M10	W8x18	.414	99.167	2	.115	140	ý	2	91863.311	236700	17.475	49.534 1	H1-1b
6	M11	W8x21	.446	77	2	.213	0	y	10	78201.637	277200	21.337	56.95 1	H1-1b
7	M12	W8x21	.258	77	2	.082	0	ý	2	78201.637	277200	21.337	56.703 1	H1-1b
8	M13	W12x26	.083	68.5	9	.014	137	y	2	187087.8	344250	30.637	121.924 1	H1-1b
9	M14	W8x18	.128	68.5	2	.040	0	y	2	95687.229	236700	17.475	51.705 1	H1-1b
10	M15	W8x18	.003	19.5	9	.001	39	y	1	219949.2	236700	17.475	63.75 1	H1-1b
11	M16	W8x18	.002	18.5	9	.001	0	ý	2	221568.4	236700	17.475	63.75 1	H1-1b

References

Y:/Drawings - 2008/AT&7/Roof Top/Gill_Chateau Apartments - 10128448/CD's REVISED REV-10 08-16-10/S1.dwg

T&TA

FA#: 10128448

GILL

USID: 100205

COUNTY: MONTGOMERY

STRUCTURE TYPE:

SITE NAME:

EXISTING 151'-0" BUILDING

			STA	Г				
		sr	nartlir	nk				
			Trylo	n				
	DRAW	ING SCALES PR	ARE INTENDED FOR 11"x1: INTED MEDIA ONLY.	7" SIZE				
		c	SUBMITTAL S					
	REV	DATE	DESCRIPTION	BY				
		12/11/19	90% CD	SAR				
	в	12/26/19	90% CD	KSN				
	с	01/14/20	90% CD	GOP				
	D	01/21/20	90% CD	PTN				
	0	02/11/20	90% CD	SAR				
AM		TOTE MARY LAND						
REVISION #		2-12	-2020					
0 0 0	"I CERT OR APF ENGINEE LICENSE	ify that the proved by M R under the Number 27	ESE DOCUMENTS WERE PREI IE AND THAT I AM A DULY E LAWS OF THE STATE OF 7217, EXPIRATION DATE 3/2	PARED BY LICENSED MARYLAND, 26/2020."				
0	$ \geq$	PRI		\equiv				
0		1 1 1 1						
0		US	D: 100205					
0		FA#:	10128448					
0								
0			GILL					
0								
0	97	27 MO	UNT PISGAH R	OAD				
0	SII	_VER S	PRING, MD 20	903				
0		FXIZ	IING BUILDING	J				
0	$ \geq$	011007		\equiv				
0	∥—	SHEEL	DESCRIPTION	·]				
0								
0		11		J				
0	\geq		SHEET NO	\equiv				
0								
0			T—1					

INDEX	
IPTION	REVISION #
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
G DIAGRAM	0
G DIAGRAM	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

GENERAL NOTES:

- THE SUBCONTRACTOR SHALL GIVE ALL NOTICES AND REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY, MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS, AND LOCAL AND STATE JURISDICTIONAL CODES BEARING ON THE PERFORMANCE OF THE WORK. THE WORK PERFORMED ON THE PROJECT AND THE MATERIALS INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES.
- 2. THE ARCHITECT/ENGINEER HAVE MADE EVERY EFFORT TO SET FORTH IN THE CONSTRUCTION AND CONTRACT DOCUMENTS THE COMPLETE SCOPE OF WORK. THE SUBCONTRACTOR BIDDING THE JOB IS NEVERTHELESS CAUTIONED THAT MINOR OMISSIONS OR ERRORS IN THE DRAWINGS AND OR SPECIFICATIONS SHALL NOT EXCUSE SAID SUBCONTRACTOR FROM COMPLETING THE PROJECT AND IMPROVEMENTS IN ACCORDANCE WITH THE INTENT OF THESE DOCUMENTS.
- THE SUBCONTRACTOR OR BIDDER SHALL BEAR THE RESPONSIBILITY OF 3. NOTIFYING (IN WRITING) THE AT&T REPRESENTATIVE OF ANY CONFLICTS, ERRORS OR OMISSIONS PRIOR TO THE SUBMISSION OF SUBCONTRACTOR'S PROPOSAL OR PERFORMANCE OF WORK. IN THE EVENT OF DISCREPANCIES, THE SUBCONTRACTOR SHALL PRICE THE MORE COSTLY OR EXTENSIVE WORK, UNLESS DIRECTED IN WRITING OTHERWISE.
- THE SCOPE OF WORK SHALL INCLUDE FURNISHING ALL MATERIALS, EQUIPMENT, LABOR AND ALL OTHER MATERIAL AND LABOR DEEMED NECESSARY TO COMPLETE THE WORK/PROJECT AS DESCRIBED HEREIN.
- THE SUBCONTRACTOR SHALL VISIT THE JOB SITE PRIOR TO THE SUBMISSION OF BIDS OR PERFORMING WORK TO FAMILIARIZE THEMSELVES WITH THE FIELD CONDITIONS AND TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- THE SUBCONTRACTOR SHALL OBTAIN AUTHORIZATION TO PROCEED WITH CONSTRUCTION PRIOR TO STARTING WORK ON ANY ITEM NOT CLEARLY DEFINED BY THE CONSTRUCTION DRAWINGS/CONTRACT DOCUMENTS.
- THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS ACCORDING TO THE MANUFACTURER'S/VENDOR'S SPECIFICATIONS UNLESS INFORMED OTHERWISE OR WHERE LOCAL CODES OR ORDINANCES TAKE PRECEDENCE.
- THE SUBCONTRACTOR SHALL PROVIDE A FULL SET OF CONSTRUCTION DOCUMENTS AT THE SITE, UPDATED WITH THE LATEST REVISIONS AND ADDENDUMS OR CLARIFICATIONS, AVAILABLE FOR THE USE BY ALL PERSONNEL INVOLVED WITH THE PROJECT.
- THE SUBCONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE SUBCONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- 10. THE SUBCONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS WHICH MAY BE REQUIRED FOR THE WORK BY THE ARCHITECT/ENGINEERING, THE STATE, COUNTY OR LOCAL GOVERNMENT AUTHORITY
- 11. THE SUBCONTRACTOR SHALL MAKE NECESSARY PROVISIONS TO PROTECT EXISTING IMPROVEMENTS, EASEMENTS, PAVEMENTS, CURBING, ETC. DURING CONSTRUCTION. UPON COMPLETION OF WORK, THE SUBCONTRACTOR SHALL REPAIR ANY DAMAGE THE MAY HAVE OCCURRED DUE TO CONSTRUCTION ON OR ABOUT THE PROPERTY.
- 12. THE SUBCONTRACTOR SHALL MAINTAIN THE GENERAL WORK AREA AS CLEAN AND HAZARD FREE DURING CONSTRUCTION AND DISPOSE OF ALL DIRT, DEBRIS, RUBBISH AND REMOVE EQUIPMENT NOT SPECIFIED AS REMAINING ON THE PROPERTY. PREMISES SHALL BE LEFT IN CLEAN CONDITION AND FREE FROM PAINT SPOTS, DUST OR SMUDGES OF ANY NATURE.
- 13. THE SUBCONTRACTOR SHALL COMPLY WITH ALL OSHA REQUIREMENTS AS THEY APPLY TO THIS PROJECT.
- 14. THE SUBCONTRACTOR SHALL NOTIFY THE AT&T REPRESENTATIVE (B&T ENGINEERING) WHERE A CONFLICT OCCURS ON ANY OF THE CONTRACT DOCUMENTS. THE SUBCONTRACTOR IS NOT TO ORDER MATERIAL OR CONSTRUCT ANY PORTION OF THE WORK THAT IS IN CONFLICT UNTIL CONFLICT IS RESOLVED BY THE AT&T REPRESENTATIVE (B&T ENGINEERING).
- 15. THE SUBCONTRACTOR SHALL VERIFY ALL DIMENSIONS, ELEVATIONS, PROPERTY LINES, ETC. ON THE JOBS.

32'

(OR) 1/16"=1'-0" (22x34)

	EXISTING AT&T ANTENNAS	- EXISTING AT&T 700 RRH (FLEXI RRH 4T4R B14
	EXISTING MW AND YAGI ANTENNA EXISTING AT&T ANTENNA (OPA-65R-LCUU-H4) TO REMAIN (TYP: OF 1 PER ALPHA & BETA SECTORS, 2 TOTAL)	-EXISTING AT&T 1900 RRH (B25 RRH4X30-4R R
\pm ELEV.= 151 $-0 \pm$ (AGL)	EXISTING SPRINT ANTENNA (TYP.)	-EXISTING AT&T 2100 RRH (B66A RRH4X45-4R I
• ELEV. = 146'-0"± (AGL)		BE REMOVED (TYP. OF 1 PER SECTOR, 3 TOTAL - EXISTING AT&T ANTENNA (742264) TO REMAIN
$\begin{array}{c} \bullet \text{IIP OF (E) AI& TANIENNA} \\ \bullet \text{ELEV.} = 144'-2"\pm (AGL) \\ \bullet \text{IIP OF (E) AI& TANIENNA} \end{array}$		(TYP. OF 1 PER SECTOR, 3 TOTAL)
ELEV. = 144'-0"± (AGL)		OF 3 PER SE
€ OF (E) AT&T ANTENNAS FOR BETA SECTOR FIFV = 143'=0"+ (ACI)	EXISTING AT&T FILTER TO REMAIN (TYP. OF 1-	BE REMOVED
Q OF (E) AT&T ANTENNAS FOR		BE REMOVED
€ OF (E) AT&T ANTENNAS FOR		
ELEV. = 140'-0"± (AGL)		
← TOP OF (E) ROOF ELEV. = 133'-6"± (AGL)		EXISTING AT&1 REMOVED (TYF
		(E) (12) 1–5, (E) (3) RET ((E) (3) RET (
		(E) (15) 1/4 (E) (15) 1/4 (E) (15) 1/4
▲ (E) GRADE		
P ELEV.= 0'-0"		
		<u> </u>
EXISTING TOWER ELEVATION-NO	DRTH	0 8'
	EXISTING AT&T ANTENNA (NNH4-65C-R6) (TYP. OF 1 PER ALPHA & BETA SECTORS, 2 TOTAL)	EXISTING AT&T ANTENNA (742264 (TYP. OF 1 PER SECTOR, 3 TOTA
TOP OF (E) PENTHOUSE	EXISTING SPRINT ANTENNAS EXISTING AT&T ANTENNA (OPA-65R-LCUU-H4) (TYP. OF 1 PER ALPHA & BETA SECTORS, 2 TOTAL)	NEW AT&T WCS RRH (AIRSCALE F (TYP. OF 1 PER ALPHA & BETA
Ψ ELEV.= 151'-0"± (AGL)	EXISTING SPRINT ANTENNA (TYP.)	NEW AT&T 1900 RRH (AIRSCALE 320W AHFIB) (TYP. OF 1 PER BI
$\Phi = 146'-0'' \pm (AGL)$	ANTENNAS (TYP.)	NEW AT&T DC9 (TYP. OF 1 PER SECTOR, 3 TOTA
$\begin{array}{c} \begin{array}{c} \text{TIP OF (E) AT&T ANTENNA} \\ \hline \\ \text{ELEV.} = 144'-2'' \pm (AGL) \\ \hline \\ \end{array}$		
ELEV. = 144'-0"± (AGL)		NEW AT&T ANTEN
€ OF (E) AT&T ANTENNAS FOR BETA SECTOR		(TYP. OF 2 PER EXISTING AT&T T (TYP. OF 2 PER CONTRACTOR
© OF (E) AT&T ANTENNAS FOR	New At&T 700 RRH (AIRSCALE DUAL RRH 4T4R	
ALPHA SECTOR ELEV. = 142'-0"± (AGL)	NEW AT&T 700 RRH (ARSCALE DUAL RRH 4T4R -	474R B30 100W ON (N) D21 BR
G OF (E) & (N) AT&T	Image: Second	
ELEV. = 140'-0"± (AGL)		B12/14 320W A (TYP. OF 2 PER
	^	(TYP. OF 2 PER
		(E) $(12) 1-5$ (E) (3) RET (
	ה ו בדישת הדה בדרשבדהו הה הה ובהש והדש הרח ההרשבדהו הה הה הה הו ו הם בדרש הה ו - ה	
		(N) (9) PWRT (N) (3) RFFT-
★ (E) GRADE		

(OR) 1/16"=1'-0" (22x34)

NEW AT&T 1900 RRH (AIRSCALE DUAL RRH 4T4R B25/66 320W AHFIB) (TYP. OF 1 PER BETA SECTOR, 1 TOTAL)

-NEW AT&T 700 RRH (AIRSCALE DUAL RRH 4T4R B12/14 320W AHLBA) (TYP. OF 1 PER BETA SECTOR, 1 TOTAL)

		SCALE: 1/4"=1'-0" (11x17)	4	
2'	4'	(OR) 1/2"=1'-0" (22x34)		\subseteq

						PROPOSE	D ANTENNA SCHEDULE		
SECTOR	ANTENNA POSITION	ANTENNA MAKE/MODEL	RAD CENTER	AZIMUTH	M-TILT	E-TILT	RRH MAKE/MODEL	TMA/FILTER	FEED
	#1	(E) KATHREIN 742264	142'-0"	0.	0.	2./2.	_	(E) (2) LGP12104	(E) (4) 1- (E) (1) F
ALPHA	#2	(E) COMMSCOPE NNH4-65C-R6	142'–0"	0.	0.	5°/2°/2° /2°/5°	(N) (1) AIRSCALE DUAL RRH 4T4R B12/14 320W AHLBA (N) (1) AIRSCALE DUAL RRH 4T4R B25/66 320W AHFIB	_	(N) (3) PWRT TRUI (N) (1) RFFT FIBER
	#3	-	-	-	-	-	_	-	-
	#4	(E) CCL OPA-65R-LCUU-H4	142'-0"	0.	0.	5'	(N) (1) AIRSCALE RRH 4T4R B30 100W AHNA	_	SHARED F
	#1	(E) CCL OPA-65R-LCUU-H4	143'-0"	150	0.	6*	(N) (1) AIRSCALE RRH 4T4R B30 100W AHNA	(E) (1) KFTDR00110030	SHARED F
BETA	#2	(E) COMMSCOPE NNH4-65C-R6	143'-0"	110	0.	12°/5°/5° /5°/10°	(N) (1) AIRSCALE DUAL RRH 4T4R B12/14 320W AHLBA (N) (1) AIRSCALE DUAL RRH 4T4R B25/66 320W AHFIB	_	(N) (3) PWRT TRUI (N) (1) RFFT FIBER
	# 3	-	-	_	_	-	-	_	-
	#4	(E) KATHREIN 742264	143'-0"	110	0.	2./2.	-	(E) (2) LGP12104	(E) (4) 1- (E) (1) F
	#1	(E) KATHREIN 742264	140'-0"	270 '	2*	2./2.	_	(E) (2) LGP12104	(E) (4) 1- (E) (1) F
Gamma	#2	(N) CCL BSA-M65R-BUU-H6	140'-0"	260*	0.	6'/6'/6'/6' /4'/4'/4'/4' /4'/4'	(N) (2) AIRSCALE DUAL RRH 4T4R B12/14 320W AHLBA (N) (2) AIRSCALE DUAL RRH 4T4R B25/66 320W AHFIB	_	(N) (3) PWRT TRUI (N) (1) RFFT FIBER
	# 3	(N) CCL BSA-M65R-BUU-H6	140'-0"	260'	0.	2*/2*	(N) (2) AIRSCALE RRH 4T4R B30 100W AHNA	_	SHARED F

					AT&	T
				sr	nartlir	nk
					Trylo	n
			DRAW	ING SCALES		7" SIZE
LINE	FEEDLINE LENGTH					
5/8" COAX			REV	DATE	DESCRIPTION	BY
ÉT COAX	130'-0"		A	12/11/19	90% CD	SAR
-606-S DC	130'-0"		в	12/26/19	90% CD	KSN
-48SM-001			C C	01/14/20	90% CD	GOP
	_			02/11/20	90% CD	SAR
	_					
IBER/DC	130'-0"					
IBER/DC	130'-0"					
-606-s DC IKS -48SM-001 RUNK	130'-0"				AND	
= /e"	-				ROMES BOOMAN	
ET COAX	130'—0"			2-	12-2020	
ET COAX	130'-0"					
-606-S DC NKS -48SM-001 IRUNK	130'–0"		"I CERT OR APF ENGINEE LICENSE	ify that the proved by M R under the Number 27	ESE DOCUMENTS WERE PRE IE AND THAT I AM A DULY E LAWS OF THE STATE OF 7217, EXPIRATION DATE 3/2	PARED BY LICENSED MARYLAND, 26/2020."
IBER/DC	130'-0"			PR	OJECT TITLE	
				US FA#:	ID: 100205 : 10128448	
					GILL	
			97 Sli	27 MO _VER S	UNT PISGAH R PRING, MD 20	OAD 903
				EXIS	TING BUILDING	
				SHEET	DESCRIPTION	
				ANTE	NNA SCHEDUI	E
				S	SHEET NO.	
					C-5	
	N.	.i.S. •				

DC12 DETAIL

SIZE AND WEIGHT TABLE

BATTERY CABINET	WIDTH	DEPTH	HEIGHT	WEIGHT
NETXTEND OUTDOOR BATTERY CABINET	36"	37"	72"	980 LBS.

CLEARANCE

CLEARANCE	FRONT	REAR	SIDES
NETXTEND OUTDOOR BATTERY CABINET	36"	6"	2"

SBS-170F Battery Features and Benefits:

- Proven Long Service
- High energy density
- Up to two year shelf life
- · Very low ventilation requirement
- Wide operating temperature range: -40°F (-40°C) to 122°F (50°C)

EnerSys PowerSafe SBS-170F Battery Specifications:

Chemistry:	Sealed Lead Acid
Voltage:	12 volts
Nominal Capacity:	170.0Ah
Terminals:	M6
Dimensions (L \times W \times H):	22.10 × 4.90 × 11.1
Weight (pounds):	115.7

10

2ND SQUID INSTALLED WILL BE ALARMED TO THE LOWEST BAND (OR FIRST INSTALLED) RRH ON BETA SECTOR.

3RD SQUID INSTALLED WILL BE ALARMED TO THE LOWEST BAND (OR FIRST INSTALLED) RRH ON GAMMA SECTOR.

AN RRH WILL NEVER HAVE MORE THAN ONE SQUID ALARMED ON IT. SQUID ALARMS ARE NOT TO BE DAISY CHAINED. 5.

6

2 = LC CONNECTOR

STRIKESORB PROTECTION $\langle 1 \rangle =$ MODULE BY RAYCAP

$\begin{pmatrix} 1 \end{pmatrix}$	RAYCAP	DC9-48-60-24-8C-EV
(E-1)	SCALE: N.T.	S

			P	ANEL	'DI STR	BUTION	PANEL	SCHEI	DULE				
												Square D #QO	
	120/240V, 1 PHASE, 3W											200A MAIN BKR	
	200A BUS												
	MAI	N BREAK	KER	RATIN	IG (A) :	20	00	SYSTE	EM VO	LTA	GE (V) :	240	
Туре	DESCRIPTION	VA	c/nc	BKR	POSN	L1	L2	POSN	BKR	c/nc	VA	DESCRIPTION	Тур
dual	UMTS CABINET	4875	nc	100	1	6892		2	30	С	2017	RECT 4	dua
		4875	nc		3		6892	4		С	2017		
dual	FLEX CABINET	1455	nc	100	5	3472		6	30	С	2017	RECT 5	dua
		1275	nc		7		3292	8		с	2017		
dual	UNLABELED	0	nc	20	9	0		10	30	С	0	RECT 6	dua
		0	nc		11		0	12		С	0		
dual	RECT 1	2017	С	30	13	2017		14	30	с	0	RECT 7	dua
		2017	С		15		2017	16		С	0		
dual	RECT 2	2017	С	30	17	2017		18	30	С	0	RECT 8	dua
		2017	С		19		2017	20		С	0		
dual	RECT 3	2017	С	30	21	2017		22	30	С	0	RECT 9	dua
		2017	С		23		2017	24		С	0		
	BLANK				25	1175		26	30	nc	1175	LUCENT AC	dua
	BLANK				27		0	28				BLANK	
	BLANK				29	0		30				BLANK	
	BLANK				31		0	32				BLANK	
	BLANK				33	0		34				BLANK	
	BLANK				35		0	36				BLANK	
	BLANK				37	0		38				BLANK	
	BLANK				39		0	40				BLANK	
	NOT PRESENT				41	0		42				NOT PRESENT	
		PHAS	ETC	TALS	(VA):	17590	16235						
	С	URRENT	PER	R PHA	SE (A):	168	156	Amper	es/pha	se c	annot ex	ceed main breaker rating	
		PAN	EL 1	TOTAL	(VA):	338	325	Lege	nd: c =	= co	ntinuous	nc = non-continuous	
		PANEL	CAP	ACITY	(kVA):	48.0	CC	ONNECT	ED LO	DAD	(kVA):	33.8	
	PANEL LOADING (1	00% non-	-cont	load)	(kVA):	13.7							
	PANEL LOADING (12)	5% contin	nuou	s load)	(kVA):	25.2							
	PANEL	(kVA):	38.9										
		(kVA):	9.1										

												Souare D #QO	
	120/240V, 1 PHASE, 3W												
	MA			DATIN	IC (A) -	া	10	OVOTE	MVO			240	
True	DESCRIPTION				DOCH .	1.4	10	DOCN		LIA	SE (V).	DESCRIPTION	Τ
rype	DESCRIPTION	260	c/nc		PUSIV	260	LZ	PUSIN	DNR	c/nc	0	CONVERTER	- iyp
single		300	nc	10	2	000	100	2	20	nc	0	CONVERTER	Sing
single		100	nc	20	5	1005	100	4	20	nc	0	SPARE	dua
dual	ACT	1095	nc	10	5	1095	1005	0		nc	U	DLANIZ	
	DLANIZ	1095	nc		6	0	1095	0				BLANK	
	DLANK	-	-		9	U	0	10				DLAINK	
	BLANK				11	0	U	12				BLANK	
	BLANK	_	-		13	0	0	14				BLANK	
	BLANK	-			15		0	16				BLANK	
	NOT PRESENT		-		1/	0		18				NOT PRESENT	
	NOT PRESENT		-		19		0	20				NOT PRESENT	
	NOT PRESENT	_			21	0	-	22				NOT PRESENT	
	NOT PRESENT				23		0	24				NOT PRESENT	
	NOT PRESENT	-			25	0		26				NOT PRESENT	
	NOT PRESENT				27		0	28				NOT PRESENT	
	NOT PRESENT				29	0		30				NOT PRESENT	
	NOT PRESENT				31		0	32				NOT PRESENT	
	NOT PRESENT				33	0		34				NOT PRESENT	
	NOT PRESENT				35		0	36				NOT PRESENT	
	NOT PRESENT				37	0		38				NOT PRESENT	
	NOT PRESENT				39		0	40				NOT PRESENT	
	NOT PRESENT				41	0		42				NOT PRESENT	
		PHAS	ETO	DTALS	(VA):	1455	1275						
	(URRENT	PEF	R PHA	SE (A):	12	11	Amper	es/pha	se c	annot ex	ceed main breaker rating	
		PAN	IEL T	TOTAL	(VA):	27	30	Lege	nd: c :	= cor	ntinuous,	nc = non-continuous	
		PANEL	CAP	ACITY	(kVA):	24.0	CC	DNNEC	red Lo	DAD	(kVA):	2.7	
	PANEL LOADING (100% non-	-cont	t. load) (kVA):	2.7							
	PANEL LOADING (12	5% contir	nuou	s load) (kVA):	0.0							
	PANE	L LOADIN	IG (T	OTAL) (kVA):	2.7							
		SPARE	CAP	ACITY	(kVA):	21.3							
				_									

EXISTING AC MAIN PANEL SCHEDULE SCALE: NTS

					ULE	SCHEE	PANEL'	BUTION	DISTR	ANEL	P			
	Square D #QO													
	200A MAIN BKR												120/240V, 1 PHASE, 3W	
													200A BUS	
	240	1	GE (V) :	LTA	M VO	SYSTE	0	20	IG (A) :	RATIN	KER	BREAK	MAIN	
Ty	DESCRIPTION		VA	c/nc	BKR	POSN	L2	L1	POSN	BKR	c/nc	VA	DESCRIPTION	Type
du	RECT 4		2017	с	30	2		6892	1	100	nc	4875	UMTS CABINET	dual
			2017	С		4	6892		3		nc	4875		
du	RECT 5		2017	С	30	6		3292	5	100	nc	1275	FLEX CABINET	dual
			2017	с		8	3472		7		nc	1455	1	
du	RECT 6		2017	с	30	10		2017	9	20	nc	0	UNLABELED	dual
			2017	С		12	2017		11		nc	0		
du	RECT 7		0	С	30	14		2017	13	30	С	2017	RECT 1	dual
		1	0	с		16	2017		15		С	2017		
du	RECT 8		0	с	30	18		2017	17	30	с	2017	RECT 2	dual
			0	с		20	2017		19		С	2017		
du	RECT 9		0	с	30	22		2017	21	30	С	2017	RECT 3	dual
			0	С		24	2017		23		С	2017		
du	LUCENT AC		1175	nc	30	26		1175	25				BLANK	
sin	BATT CAB GFCI		180	nc	20	28	180		27				BLANK	
sin	BATT CAB HEAT		540	nc	15	30		540	29				BLANK	
	BLANK					32	0		31				BLANK	
	BLANK					34		0	33				BLANK	
	BLANK					36	0		35				BLANK	
	BLANK					38		0	37				BLANK	
	BLANK					40	0		39				BLANK	
	NOT PRESENT					42		0	41				NOT PRESENT	
							18612	19967	(VA):	TALS	ETC	PHAS		
	ceed main breaker rating	xce	annot ex	se c	s/pha	Ampere	180	192	SE (A):	R PHA	PEF	IRRENT	CL	
	nc = non-continuous	s.	ntinuous	= co	nd: c =	Lege	79	385	(VA);	OTAL	EL 1	PAN		
	38.6	3	(kVA):)AD	ED LO	NNECT	CC	48.0	(kVA):	ACITY	CAP	PANEL		
								14.4	(kVA):	load	cont	0% non-	PANEL LOADING (10	
								30.3	(kVA):	s load	uou	% contin	PANEL LOADING (125	
		1						44.6	(kVA):	OTAL	G (T	LOADIN	PANEL	
								3.4	(kVA):	ACITY	CAP	SPARE		
		1						3.4	(KVA):		ĺ	JAP.	SPARE CAP	SPARE UAP

	Square D #QO													
	the second se												120/240V, 1 PHASE, 3W	
	240	11	GE (V)	LTA	MVO	SYSTE	0	10	IG (A) :	RATIN	KER	BREA	MAI	
Тур	DESCRIPTION		VA	d/nc	BKR	POSN	L2	L1	POSN	BKR	c/nc	VA	DESCRIPTION	Туре
sing	CONVERTER		0	nc	20	2		360	1	10	nc	360	LIGHTS	single
dua	SPARE	_	0	nc	20	4	180		3	20	nc	180	GFCI	single
			0	nc		6		1095	5	10	nc	1095	AC 1	dual
	BLANK					8	1095		7		nc	1095		
	BLANK					10		0	9				BLANK	
	BLANK					12	0		11				BLANK	
	BLANK					14		0	13				BLANK	
	BLANK					16	0		15				BLANK	
	NOT PRESENT					18		0	17				NOT PRESENT	
	NOT PRESENT					20	0		19				NOT PRESENT	
	NOT PRESENT					22		0	21				NOT PRESENT	
	NOT PRESENT					24	0		23				NOT PRESENT	
	NOT PRESENT					26	1.00	0	25				NOT PRESENT	
	NOT PRESENT					28	0		27				NOT PRESENT	
	NOT PRESENT					30		0	29				NOT PRESENT	
	NOT PRESENT					32	0		31				NOT PRESENT	
	NOT PRESENT					34		0	33				NOT PRESENT	
	NOT PRESENT					36	0		35				NOT PRESENT	
	NOT PRESENT					38		0	37				NOT PRESENT	
	NOT PRESENT					40	0		39				NOT PRESENT	
	NOT PRESENT					42		0	41				NOT PRESENT	
							1275	1455	(VA):	TALS	ETC	PHAS		
	ceed main breaker rating	exc	annot e:	se c	s/pha	Ampere	11	12	SE (A):	R PHA	PEF	JRRENT	CL	
	, nc = non-continuous	JS,	ntinuous	= coi	nd:c=	Lege	30	27	(VA):	TOTAL	IEL 1	PAN		
	2.7	2	(kVA):	DAD	ED LC	NNECT	CC	24.0	(kVA):	ACITY	CAP	PANEL		
								2.7	(kVA):	load)	-cont	0% non	PANEL LOADING (10	
								0.0	(kVA):	s load)	nuou	% contin	PANEL LOADING (125	
								2.7	(kVA):	OTAL)	G (T	LOADIN	PANEL	
								213	(LAVA)	ACITY	CAD	SDVDE		

3 E-3 SCALE: NTS

2 E-3 EXISTING AC SUB PANEL SCHEDULE SCALE: NTS

Smartlink

DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY.

	SUBMITTALS											
REV	DATE	DESCRIPTION	BY									
A	12/11/19	90% CD	SAR									
в	12/26/19	90% CD	KSN									
с	01/14/20	90% CD	GOP									
D	01/21/20	90% CD	PTN									
0	02/11/20	90% CD	SAR									
\square												

"I CERTIFY THAT THESE DOCUMENTS WERE PREPARED BY OR APPROVED BY ME AND THAT I AM A DULY LICENSED ENGINEER THOUBER THE LAWS OF THE STATE OF MARYLAND, LICENSE NUMBER 27217, EXPIRATION DATE 3/26/2020."

PROJECT TITLE

USID: 100205 FA#: 10128448

GILL

9727 MOUNT PISGAH ROAD SILVER SPRING, MD 20903

EXISTING BUILDING

SHEET DESCRIPTION

AC PANEL SCHEDULE

SHEET NO.

E-3

NOTES:

1. SWITCH OFF EXISTING DC BREAKERS AFTER RRHs HAVE BEEN DECOMMISSIONED, RELABEL AS "SPARE".

TIER 1 (LOWER) VOLTAGE: -48V MAX. TIER BUS CURRENT: 600A

POSITION	DESCRIPTION	BRKR (A)
1	(E) SPARE	15
2	(E) SPARE	15
3	(E) SPARE	15
4	(E) SPARE	15
5	(E) SPARE	15
6	(E) SPARE	15
7	(E) NOKIA FSM4 BBU	20
8		
9	(E) SPARE	25
10	(E) SPARE	25
11	(E) SPARE	25
12		

POSITION	DESCRIPTION	BRKR (A)
13	(N) B12/14 RRH, SECTOR A	50
14	(N) B12/14 RRH, SECTOR B	50
15	(N) B12/14 RRH, SECTOR C	50
16	(N) B25/66 RRH, SECTOR A	50
17	(N) B25/66 RRH, SECTOR B	50
18	(N) B25/66 RRH, SECTOR C	50
19	(N) B30 RRH, SECTOR A	25
20	(N) B30 RRH, SECTOR B	25
21	(N) B30 RRH, SECTOR C	25
22		
23		
24		

TIER 2 VOLTAGE: -48V

MAX. TIER BUS CURRENT: 600A

REMOVE UNUSED BREAKERS, INSTALL NEW CIRCUIT BREAKERS FOR NEW RRHs AS SHOWN

NOTES:

BELOW.

1.

TIER 3 (OPTIONAL - NOTE: 4) VOLTAGE: -48V MAX. TIER BUS CURRENT: 600A

DESCRIPTION	BRKR (A)	POSITION	
(E) GSM	80A	37	
		38	
		39	
		40	
		41	
		42	
		43	
		44	
		45	
		46	
		47	
		48	

DC BREAKER	ALPHA	AT&T
SIZE	PART [#]	NEQ #
1A/1P	Unavailable	Not Applicable
3A/1P	470-301-10	NEQ 10356
5A/1P	470-302-10	NEQ 10357
10A/1P	470-303-10	NEQ 10358
15A/1P	470-304-10	NEQ 10359
16A/1P	Unavailable	Not Applicable
20A/1P	470-305-10	NEQ 10360
25A/1P	470-306-10	NEQ 10361
30A/1P	470-307-10	NEQ 10362
35A/1P	Unavailable	Not Applicable
40A/1P	470-309-10	NEQ 10364
45A/1P	Unavailable	Not Applicable
50A/1P	470-311-10	NEQ 10366
60A/1P	470-312-10	NEQ 10367
70A/1P	Unavailable	Not Applicable
75A/1P	Unavailable	Not Applicable
80A/1P	470-314-10	NEQ 10369
90A/1P	Unavailable	Not Applicable
100A/1P	470-316-10	NEQ 10371
100A/2P	Unavailable	Not Applicable
125A/2P	Unavailable	Not Applicable
150A/2P	747-148-20-000	NEQ 10373
200A/3P	Unavailable	Not Applicable
225A/3P	Unavailable	Not Applicable
250A/3P	747-221-20-000	NEQ 10377

ARGUS DC CIRCUIT BREAKER PART AND NEQ DATA

DC PANEL SCHEDULE E-4 SCALE: N.T.S

34 35 36

POSITION

25

26 27

28 29

30

31

32

33

NOTES:

- 1. ALL BREAKERS 100A AND LARGER REQUIRE ONE (1) UNUSED POSITION ON EACH SIDE.
- 2. 2-POSITION AND 3-POSITION BREAKERS REQUIRE AN ADAPTOR PLATE ON LOAD TERMINALS.
- 3. INSTALL LARGER BREAKERS ON UPPER TIERS TO FACILITATE CABLE MANAGEMENT.
- 4. THIS DETAIL IS APPLICABLE FOR ALPHA 48/24V DUAL VOLTAGE POWER SYSTEMS 4-TIER MODEL (NEQ. 15239) AND 3-TIER MODEL (NEQ. 15240).
- 5. BREAKERS SHALL BE AM-TYPE, 80V 10KA SCCR, MAXIMUM RATING IS 250A. BREAKERS 1A TO 100A ARE 1-POSN, 110A TO 150A ARE 2-POSN AND 175A TO 250A ARE 3-POSN.
- 6. GMT FUSE RATINGS ARE 0.5A TO 15A.

USID: 100205 FA#: 10128448

GILL

9727 MOUNT PISGAH ROAD SILVER SPRING, MD 20903

EXISTING BUILDING

SHEET DESCRIPTION

DC PANEL SCHEDULE

SHEET NO.

E-4

TIER 4 (UPPER) VOLTAGE: -48V

DESCRIPTION	BRKR (A)

NOTES:

FURNISHED BY OEM/AT&T. INSTALLED BY OEM OR AS SCOPED BY MARKET.

FURNISHED BY GC.

INSTALLED BY GC.

FINAL CONNECTION BY OEM OR AS SCOPED BY MARKET. 5.

DELETED.

DELETED

PART OF CONVERTER WITH 18 BREAKER POSITIONS. BREAKERS SPECIFIED SEPARATELY. BREAKERS TO BE TAGGED AND LOCKED OUT. 8

- 10. SIAD IS FURNISHED AND INSTALLED BY OTHERS AND INCLUDES POWER CONNECTIONS AND FIBER TO THE UNIT OR AS SCOPED BY MARKET. WHEN IN THE GENERAL CONTRACTOR'S SCOPE, INSTALL 10 AWG CHASSIS GROUND, PROVIDE (2) 10A BREAKERS FROM A 24V DC POWER SOURCE OR (2) 5A BREAKERS FROM A 48V DC POWER SOURCE AND CONNECT USING MFR POWER CABLE WITH SPECIAL CONNECTOR. 11. LEC TO FURNISH AND INSTALL NETWORK INTERFACE DEVICE.

12. COIL EXTRA LENGTH OF FIBER CABLE(S) WITHIN FIBER MANAGEMENT TRAY INSTALLED IN LTE FRAME.

13. MAXIMUM LENGTH OF SIZE 12 AWG DC POWER CABLE TO RRH SHALL NOT EXCEED 100 FEET. 14. SINGLE-CONDUCTOR DC POWER CABLES SHALL BE TELCOFLEX® OR KS24194[™], COPPER, UL LISTED RHH NON-HALOGEN, LOW SMOKE WITH BRAIDED COVER, TYPE TC (1/0 AND LARGER). UNLESS OTHERWISE NOTED, STRANDING SHALL BE CLASS B (TYPE III) FOR CABLES SIZES 14, 12 & 10 AWG AND CLASS I (TYPE IV) FOR SIZES 8 AWG AND LARGER. CABLES SHALL BE COLOR CODED RED FOR +24V, BLUE FOR -48V AND GRAY FOR 24V AND 48V RETURN CONDUCTORS. MULTI-CONDUCTOR DC POWER CABLES SHALL BE COPPER, CLASS B STRANDING WITH FLAME RETARDANT PVC JACKET, TYPE TC, UL LISTED FOR 90°C DRY/ 75°C WET INSTALLATION.

15. GROUNDING WIRES SHALL BE COPPER, GREEN THHN/THWN UL LISTED FOR 90'C DRY/75'C WET INSTALLATION. MINIMUM SIZE IS 6 AWG UNLESS NOTED OTHERWISE.

16. RET CONTROL FROM THE RRH IS AN OPTIONAL METHOD OF CONNECTION. REFER TO RF DATA SHEET FOR APPLICABILITY. 17. DELETED.

18. PROVIDE GROUND WIRES FOR ENHANCED ALARM MODULE (eAM) WHEN EMPLOYED BY MARKET.

19. DELETED.

20. DELETED

21. TMAS MAY BE EITHER SINGLE UNITS (AS SHOWN) OR TWIN UNITS. 22. NOTED EQUIPMENT MAY BE COMMON TO LTE AND UMTS SYSTEMS. REFER TO UMTS SYSTEM DIAGRAM IF

APPLICABLE 23. EXISTING 700MHz BAND BBU IF MODEL 9926 (d2Uv3) MAY BE POWERED FROM A 10A BREAKER.

LTE SYSTEM DIAGRAM, TOWER SITE WITH INDOOR ALU BASEBAND AND RRHs @ GRADE LEVEL

SHEET DESCRIPTION

SYSTEM DIAGRAM

SHEET NO.

E-6

		SITE DATA INPUT WORKSHEET - IN	DOOR SITE PO	WER EST	IMATE	TOOL				
STEP 1: ENTER QUANTITIES OF EQUIPMENT & DC OPERATING VOLTAGE:		NOTE: LOAD VALUES FOR ANY EQ	UIPMENT CAN B	E USER SP	ECIFIED	ON THE POWER CONSUMPTION WORKSHEET -	USER CHA	NGESTO	DEFAU	ILT LOAD VALUES ARE HIGHLIGHTED IN B
	-	RADIO HEADS - Outdoor	VOLTAGE	WATTS	QTY	LTE 40 & Multi-Std EQUIPMENT	VOLTAGE	WATTS	QT	ANCILLARY CELL SITE EQUIPMEN
STEP 2: ENTER DC PLANT TYPE FROM DROP-DOWN MENU:		Erlosson			0	A-LU 9926 LTE BBU (wimax: 3 eCEM-u)	48	0	0	A-LU 7705 SIAD
("GENERIC" +24V or -48V DC PLANT CAN BE SELECTED FOR ANY MANUFACTURER'S DC PLANT)		0 RRUS 01 82, 85 (80W)	48	0	1	Nokia FSM-4	48	898		(FUTURE)
GENERIC - ANY 48VDC PLANT		0 RRUS 01 B12 (50W)	48	0		(FUTURE)			0	A-LU MPR-9500 MW Service Switch - MS
-45V PRMARY DC PLANT SPECFIED		0 RRUS 11 B12 (2x30W)	48	0		(FUTURE)	<u> </u>			A-Lu MPR-9500 MW Outdoor Unit - OD
(DC PLANT CONFIGURATION GAN BE REVIEWED ON DC PLANT WORKSHEET)	비ᄂ	RRUS 11 B2, B4, B5, B12 (2x40W)	48	0		(FUTURE)	<u> </u>			A-Lu MPR-9500 MW MPT-HL (Indoor)
STEP 2A: THIS STEP ONLY SHOWN IF "GENERIC" DO PLANT PLANT TYPE HAS BEEN SELECTED:	⊢	0 RRUS 12 82, 84, 85 (2x50W)	48	0		(FUTURE)				(FUTURE)
SELECT AND CONVENTING CONVENTING ST	⊢	0 RRUS 32 82 (4x40W)	48	0	0	Encision LTE INBREGOT BBU - 1 DUL	48	0	1	CISCO MWR-2941 SIAD
ELECT 24Y CONVENTER CAPACITY (ALL ST CONVENTER		0 RRUS 32 B30 (4125W)	48	0	0	Energy WCOMA ROSED1 - 1 OUW	48	0	11-2	CISCO SIAD ASR-901
STEP 38: THIS STEP ON A SUBSING ETVICE OF AN TRANSPORT TYPE HAS BEEN SUBSICILAR DE LA SUBSING AND A SUBSICILAR DE LA SUBSICIL	⊢	A RRUS A2 82 84 812	40	0	0	Edicason LTE R855501 BBU - 1DUS	40	0	11	Cisco 15454 MSP (MW Ring Config)
THE STEP ONLY SHOWN IF THE GREAT OF PERMIT PERMIT THE ARE BEEN SELECTED.		a RRUSE2 829	48	0	0	Ericsson LTE R896601 BBU - 20US	40	0	۱⊢	(FUTURE)
	41 F	0 RRUW 82, 85	48	0	0	Ericsson XMU	48	0		Tru-Position LMU (E911)
STEP 5: DO YOU WANT TO CONFIGURE A STANDARD STAND-ALONE DC CONVERTER SYSTEM? N	11 🖿	0 AR 21 (60W)	48	0	0	Ericsson LTE RBS5216	48	0		DC Free Air (per HVAC unit)
NOTE: IF YOU SELECT "" ANY INTEGRATED DC PLANT CONVERTER OPTIONS WILL BE BYPASSED	11 🖿	0 RRUS 4478 B14	48	0		(FUTURE)			1	GENERIC Ethemet NID
		(FUTURE)				(FUTURE)			0	GENERIC Hydrogen Detector
		A-LU				(FUTURE)			0	GENERIC RET Controller
		0 4x45 B66A	48	0		(FUTURE)			0	GENERIC RXAIT
		e FDO RRH2x40-07L (UHLA) B17	48	0		-			0	GENERIC Smoke Detector
		0 RRH2x40-07L-AT (UHL8) B17	48	0	QTY	UMTS 3G EQUIPMENT	VOLTAGE	WATTS	0	GENERIC TMA System
STEP 4: ENTER INDOOR SITE BUILDING/SHELTER DATA:	비ᄂ	B25 RRH4x30 (UHFA) B25	48	0	0	A-LU MACRO NodeB (3S1C - 40W)	24	0	•	GENERIC Tower Lighting (DC)
(Square footage used for interior AC lighting LOAD ealeulation)		0 B25 RRH2X50 (UHFA) B25	48	0	0	A-LU MACRO Node8 (352C - 40W)	24	0		NG480
SELECT SITE BULDING TYPE & SIZE: OTHER	⊢	0 2X5UW-55U 55	48	0	0	A-LU MACHO Nodes (383C - 40W)	24	0		CISCO 2911
SPECFY TOTAL FLOOR SPACE (SGUARE FEET): 0		0 2X60W-1900 82	48	0	0	ALLI MACRO Nodeb (384C - 40W)	24	0	╢┝─	(POTORE)
	비ト		48	0	0	Ad UNICEO NodeE	24	0	╢┝─	(POTORE)
STEP 5- ENTER SITE MAAC SYSTEM DATA-	۱H		40	0	0	Ad U. 9395 dOLL Distributed NodeB MIL	49	0	╢┝─	(FOTORE)
SPECIFY NOVIDUAL HVAC UNIT SIZE (TONS): 0 SPECIFY QUANTITY: 0	11 H	a RRH4X25 B30	48	0	0	A-LU 9396 dell Distributed NodeB MU	40	0	⊪	(FUTURE)
DOES SITE HAVE ADDITIONAL HVAC (DEFERENT SCELY N		(FUTURE)		-	-	(FUTURE)			1-	C. W. F. WETTING
	⊓⊢	(FUTURE)				(FUTURE)	<u> </u>		ar	Y TX RF AMP (MCPA or SCPA) EQPT
ARE THERE SITE HVAC HEATING UNITS? N		RADIO HEADS - Indoor	VOLTAGE	WATTS	0	Ericsson RBS3206 NodeB 3S1C - 1 CAB	24	0		Andrew (12 module mcpa FRAME)
		Erlosson			0	Ericsson RBS3206 NodeB 3S2C - 1 CAB	24	0	0	Andrew 135 Watt Module
TOTAL SPECFIED SITE HVAC: B.TONS ESTMATED HVAC REQUIREMENT: TWO 4-TON UNITS		RRUS 01 82, 85 (80W)	48	0		NON-OBIF Erlosson 3rd, 4th & 6th Ca	rrier			(FUTURE)
SPECIFIED HVAC NOT SUFFICIENT		0 RRUS 01 B12 (60W)	48	0	0	Ericsson RBS3206 NodeB 3S3C - 2 CAB	24	0	0	Powerwave 12 module mcpa FRAME)
		RRUS 11 B12 (2x30W)	48	0	0	Ericsson RBS3205 NodeB 3S4C - 2 CAB	24	0	0	Powerwave 90 Watt Module
THIS TOOL DOES NOT APPLY TO SITES THAT ARE EQUIPPED WITH FREE STANDING DIRECT AR COOLING		RRUS 11 82, 84, 85, 812 (2x40W)	48	0	0	Ericsson RES3206 NodeB 3S5C - 3 CAB	24	0	0	Powerwave 120 Watt Module
		RRUS 12 B2, B4, B5 (2x50W)	48	0		OBIF Erlosson 3rd, 4th & 5th Carri	er	_	0	Powerwave 180 Watt Module
		0 RRUS 32 82 (4x4DW)	48	0	0	Ericsson RES3206 NodeB 3S3C - 1 CAB	24	0		(FUTURE)
	11	0 RRUS 32 B30 (4x25W)	48	0		(Select RRUS from left section)			•	CCI 125 Watt DAB SCPA Module
STEP 6: ENTER STE STATIONARY GENERATOR DATA:	41 F	0 RRUS 32 B66A	48	0	0	Ericsson RBS3206 NodeB 3S4C - 1 GAB	24	0	•	CCI 125 Watt DAC SCPA Module
DOES SITE HAVE A STATIONARY GENERATOR? N	⊢	0 RRUS A2 82, 84, 812	48	0		(Select RRUS from left section)			-	(FUTURE)
ESTIMATED CAPACITY REQUIRED: 20 KW (NO SITE GENERATOR)	41 🛏	DELIMINE DE	48	0	0	Encision Read/or Nodes 334C - 1 GAB	24	0	(CUS	STOM DO LOADS DEFINED ON POWER CONSUM
STEP 7- ENTER SITE BATTERY CONFIGURATION DATA-	۱H	A AIR 21 (50W)	40	0		Editional RES3205 NodeE 3550 - 2 CAR	24			R14 Firshet RRH
STEP 7. ENTER SHE BATTERY CONTROL STORAGE STOR	11 H	A RRUS 4478 B14	40	0	0	(Select SRUS from left section)	24		11	9412 Heaters
SPECIFY TOTAL QUANTITY OF BATTERY STRINGS: 2		(FUTURE)		· ·	0	Ericsson 3303 MICRO NodeB	24	0		825/66 Dual Band RRH
TOTAL SITE BATTERY CAPACITY (AH): 310		A-LU			0	Ericsson RBS3418 Distributed NodeB MU	48	0		B12/14 Dual Band RRH
NOTE: STANDARD BATTERY CAPACITY HAS BEEN SPECIFIED		3 4x45 B66A	48	2112		(FUTURE)			0	
NOTE: 12 VOLT MONOBLOCK BATTERIES - 4 batteries per -48V String		3 FDD RRH2x40-07L (UHLA) B17	48	888		(FUTURE)			0	
ESTIMATED BATTERY RESERVE TIME: 2.44 HOURS (NO SITE GENSET)		0 RRH2x40-07L-AT (UHLB) B17	48	0					0	
	🗖	8 B25 RRH4x30 (UHFA) B25	48	1632		CUSTOM AC LOADS DEFINED ON POWER CONSUMPTI	ONWORKSH	EET)	0	
SITES WITH STATIONARY GENSETS SHALL BE ENGINEERED WITH A MAX OF 3 SHELVES of 180 AH BATTERIES		B25 RRH2x50 (UHFA) B25	48	0	QTY	USER SPECIFIED AC EQUIPMENT	VOLTAGE	KVA.	0	
(3 strings at -48v or 6 strings at +24v) - ALL OTHER SITES A MINIMUM OF 4 HOURS		0 2X60W-850 85	48	0	0			0	0	
	니뇬	0 2X60W-1900 82	48	0	0		L	0	0	
SITE POWER CALCULATION TOOL - VERSION 4.3 - October 17, 2017 R. BADGERO		0 2X50W-1900A B2	48	0	0		L	0	0	
ANY QUESTIONS PLEASE CONTACT RICK BADGERO (RB6820gATT.COM)		RRH20000700E (0HLG) 829	48	0	0		—	0	1	
		REH4X25 B30	40	40.40	0		I —	0	11	
		(FUTURE)	~	14.40	0		<u> </u>	0	╢┝╴	TOTAL USER SP
		(FUTURE)			0		 	0	11	TOTAL +24V (27V) A
	15				0			0	11	TOTAL -48V (64V) A
					0			0	1-	
	1					TOTAL USER SPEC	FIED KVA	: 0]	
	1					TOTAL 120VAC AMP8: 0	1			
						TOTAL 240VAC AMPS: 4882				
	1									
	1		-48V PI	RMARY VO	LTAGE	DC PLANT SPECIFIED		ŧ		ESTIMATED SITE MAX, AC LOAD (AI
	1	-24VDC E0	DUPMENT LOAD	. 0	WATTS	= 0 AMP3 at +24V		1		ESTMATE 200A SERVICE SUI
	1	-48VDC E0	PUPMENT LOAD	: 8886	WATTS	= 184 AMP3 at 48V		+		STE SENEDITAD CARACTY DESI
		TOTAL PRI	BECONDART 24	• 0000	WATTO			ŧ	<u> </u>	
	1	I TOTAL PRI	AND NOT LOAD		104113	104 AMP 0 01 40V		L L	⊢	INO ON ATTE GENERATION CAPA
		(DC 8	LANT CONFIGUR	ATION CAN	SE RE	VEWED ON DC PLANT WORKSHEET)		Т	<u> </u>	and on one of the other of the
	1	DC PLANT: GE	ENERIC - ANY -4	VDC PLAN	T			t		RECOMMENDED HVAC \$YS
		-48V F	RECTIFIERS REQ	UIRED (N+1): 8			1		SPECIFIED SITE TOTAL HVAC CAPA
	1		-48V RECT	FER SLOT	8: 11	1		1		ESTIMATE EXISTING HVAC NOT
	1	CONV. TYPE: GE	ENERIC - CONV.	ZE & SLOT	TOTYM	ANUALLY SPECIFIED		I		
		-2	4V CONVERTER	REQUIRED	D: 0	(NO DC CONVERTERS REQUIRED)		1		
	1		+24V CONVER	TER SLOT	8: 0	(NO DC CONVERTERS REQUIRED)		1		
	1		E	TIMATED B	BATTER	Y RESERVE TIME		4		
			2 165 AH 48	VSTRINGS	= 2.44	HOURS (4 HOUR MINIMUM BATTERY RES	SERVE)	1		

BRIGHT	YELLOW	
NT	VOLTAGE	WATTS
	48	0
85	48	0
DU	48	0
	48	0
_		~
_	40	
_	40	0
	40	0
	40	0
-	40	0
_	40	
	40	0
	48	0
	48	0
	48	0
	48	0
	48	U
	48	0
	48	0
	48	0
	48	0
	48	0
т.	VOLTAGE	WATTS
	24	0
	24	0
	24	0
	24	0
	24	0
	24	0
	24	0
	24	0
IPTION	WORKSHEET)	1
г	VOLTAGE	WATTS
	48	2208
	48	800
	48	0
	48	0
	48	0
	48	0
	48	0
	48	0
	48	0
	48	0
	48	0
	48	0
	48	0
	48	0
	48	0
PECFE	ED WATTS:	3008
AMPS:	0	
AMPS	65.7	
MPSI	97.50	AMPs
- market and the		

UFFICIE	NT			
DURED:	20	KW		
ACITY:	0	KW		
TOR)				
STEM:	TWO	4-TON		
ACITY:	D-TONS			
SUFFICIENT				

Smartlink

DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY.

SUBMITTALS				
REV	DATE	DESCRIPTION	BY	
A	12/11/19	90% CD	SAR	
в	12/26/19	90% CD	KSN	
с	01/14/20	90% CD	GOP	
D	01/21/20	90% CD	PTN	
0	02/11/20	90% CD	SAR	
\square				

"I CERTIFY THAT THESE DOCUMENTS WERE PREPARED BY OR APPROVED BY ME AND THAT I AM A DULY LICENSED ENGINEER THOUBER THE LAWS OF THE STATE OF MARYLAND, LICENSE NUMBER 27217, EXPIRATION DATE 3/26/2020."

PROJECT TITLE

USID: 100205 FA#: 10128448

GILL

9727 MOUNT PISGAH ROAD SILVER SPRING, MD 20903

EXISTING BUILDING

SHEET DESCRIPTION

POWER LOAD CALCULATIONS

SHEET NO.

RF-4

GENERAL NOTES

1. GENERAL REQUIREMENTS

A. PURPOSE AND INTENT

I.THE DRAWING AND SPECIFICATION ARE INTENDED TO BE FULLY EXPLANATORY AND SUPPLEMENTARY, HOWEVER, SHOULD ANYTHING BE SHOWN, INDICATED, OR SPECIFIED ON ONE AND NOT THE OTHER, IT SHALL BE DONE THE SAME AS IF DISCREPANCIES BETWEEN REQUIREMENTS SHOWN IN BOTH. THE MORE STRINGENT REQUIREMENTS SHALL APPLY.

2. THE INTENTION OF THE DOCUMENT IS TO INCLUDE ALL LABOR AND MATERIALS REASONABLY NECESSARY FOR THE PROPER EXECUTION AND COMPLETION OF THE WORK AS STIPULATED IN THE CONTRACT.

A. CONFLICTS

VERIFY ALL MEASUREMENTS AT THE SITE BEFORE ORDERING MATERIAL OR DOING ANY WORK. NO EXTRA CHARGE OR COMPENSATION WILL BE ALLOWED DUE TO DIFFERENCES BETWEEN ACTUAL DIMENSIONS OR DIMENSIONS SHOWN ON PLANS SUBMIT NOTICE OF ANY DISCREPANCY IN DIMENSIONS OR OTHERWISE TO AT&T FOR RESOLUTION BEFORE PROCEEDING WITH THE WORK. 2. NO PLEA OF IGNORANCE OF CONDITIONS THAT EXIST, OR OF

DIFFICULTIES OR CONDITIONS THAT MAY BE ENCOUNTERED, OR OF ANY OTHER RELEVANT MATTER CONCERNING THE EXECUTION OF THE WORK WILL BE ACCEPTED AS AN EXCUSE FOR ANY FAILURE OR OMISSION ON THE PART OF THE CONTRACTOR TO FULFILL EVERY DETAIL OF ALL THE REQUIREMENTS OF THE CONSTRUCTION DOCUMENTS GOVERNING THE

A. CLEANING

KEEP THE SITE FREE FROM ACCUMULATION OF WASTE AND RUBBISH CAUSED BY EMPLOYEES AT THE COMPLETION OF THE WORK, REMOVE ALL WASTE AND NON-CONSTRUCTION MATERIAL INCLUDING ALL CONTRACT TOOLS, SCAFFOLDING, AND SURPLUS MATERIAL AND LEAVE SITE CLEAN AND READY FOR USE

A. CODES

1.CONTRACTOR SHALL BE RESPONSIBLE FOR FOLLOWING ALL LAWS, REGULATIONS, AND RULES PROMULGATED BY FEDERAL STATE AND LOCAL AUTHORITIES WITH JURISDICTION OVER THE SALTIER. THIS RESPONSIBILITY IS IN EFFECT REGARDLESS OF WEATHER THE LAW, ORDINANCE, REGULATION OR RULE IS MENTIONED IN THESE SPECIFICATIONS.

A. LICENSING

1. CONTRACTOR SHALL HAVE AND MAINTAIN A VALID CONTRACTOR'S LICENSE FOR THE LOCATION IN WHICH THE WORK IS TO BE PERFORMED. FOR JURISDICTIONS THAT LICENSE INDIVIDUAL TRADES, THE TRADESMAN OR SUBCONTRACTOR PERFORMING THOSE SHALL BE LICENSED, RESEARCHED AND COMPLY WITH THE LICENSING LAWS, PAY LICENSE FEES, AND SELECT AND INFORM SUBCONTRACTORS REGARDING THESE LAWS.

A. OSHA

1. FOLLOW ALL APPLICABLE RULES AND REGULATIONS OF THE OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATIONS AND STATE LAWS BASED IN THE FEDERAL OCCUPATION SAFETY AND HEALTH ACT. THESE REGULATIONS INCLUDE, BUT ARE NOT LIMITED TO, REGULATIONS DEALING WITH TOWER CONSTRUCTION AND SAFETY, EXCAVATION AND TRENCHING, AND WORK IN CONFINED SPACES. ENSURE THAT EMPLOYEES AND SUBCONTRACTORS WEAR HARD HATS AT ALL TIMES DURING CONSTRUCTION.

A. PHOTOS

1. PROVIDE PHOTOGRAPHIC EVIDENCE OF ALL FOUNDATION INSTALLATIONS, GROUNDING, AND TRENCHING AFTER PLACEMENT OF UTILITIES PRIOR TO BACKFILL.

A. BUILDING PERMITS

1. CONTRACTOR WILL SUBMIT CONSTRUCTION DOCUMENTS TO THE JURISDICTIONAL AUTHORITY FOR PLAN CHECK AND REVIEW. CONTRACTOR WILL SUBMIT LICENSING AND WORKMAN'S COMPENSATION INFORMATION TO THE JURISDICTION AS REQUIRED TO OBTAIN THE BUILDING PERMIT, CONTRACTOR SHALL COORDINATE AND SCHEDULE REQUIRED INSPECTIONS AND POST REQUIRED PERMITS AT THE JOB SITE COMPLY WITH SPECIFIC PROJECT RELATED REQUESTS AND SUGGESTIONS MADE BY BUILDING INSPECTOR, AND INFORM CONSTRUCTION MANAGER OF ANY SUCH WORK THAT MAY BE BEYOND THE SCOPE OF THE CONTRACT OR DEVIATE FROM THE CONSTRUCTION DOCUMENT. AT&T WILL REIMBURSE THE CONTRACTOR FEES FOR PLAN REVIEW, BUILDING PERMIT, CONNECTIONS, AND INSPECTIONS. (INCLUDED IN THE BASE PROPOSAL).

A. ZONING REGULATIONS AND CONDITIONAL USE PERMITS

1. CONTRACTOR WILL SUBMIT ALL ZONING AND CONDITIONAL USE PERMITS. SOME USE PERMITS MAY HAVE SPECIFIC REQUIREMENTS FOR THE SITE RELATED TO CONSTRUCTION, SUCH AS NOISE REGULATIONS, HOURS OF WORK, ACCESS LIMITATIONS, ETC. THE CONSTRUCTION MANAGER WILL INFORM THE CONTRACTOR OF THESE REQUIREMENTS AT THE PRE-BID MEETING OR AS SHOWN IN THE CONSTRUCTION DOCUMENTS.

A. FAA PERMIT AND TOWER LIGHTING

1. REFER TO CONSTRUCTION DOCUMENTS AND CONSTRUCTION MANAGER FOR FAA AND STATE LIGHTING REQUIREMENTS, CONTRACTOR SHALL PROVIDE TEMPORARY FM APPROVED LIGHTING UNTIL PERMANENT LIGHTING IS OPERATIONAL

A. TOWER SECURITY

A. IOWER SECURITY 1. IF REQUIRED, TOWER MUST BE FENCED, TEMPORARILY OR PERMANENTLY WITHIN 24 HOURS OF ERECTION. DO NOT ALLOW THE GATE ACCESSING THE TOWER AREA TO REMAIN OPEN OR UNATTENDED ANY TIME FOR ANY REASON. KEEP THE GATE CLOSED AND LOCKED WHEN NOT IN

L. SITE CONTROL

THE CONTRACTOR IS COMPLETELY RESPONSIBLE FOR CONTAINMENT OF SEDIMENT AND CONTROL OF EROSION AT THE SITE. ANY DAMAGE TO ADJACENT OR DOWNSTREAM PROPERTIES WILL BE CORRECTED BY THE CONTRACTOR AT NO EXPENSE TO AT&T. 2. THE CONTRACTOR IS TO MAINTAIN ADEQUATE DRAINAGE AT ALL

TIMES. DO NOT ALLOW WATER TO STAND OR POND. ANY DAMAGE TO STRUCTURES OR WORK ON THE SITE CAUSED BY INADEQUATE MAINTENANCE OF DRAINAGE PROVISIONS WILL BE THE RESPONSIBILITY OF THE CONTRACTOR AND ANY COST ASSOCIATED WITH REPAIRS FOR SUCH DAMAGE WILL BE AT THE CONTRACTOR'S EXPENSE.

3. ALL WASTE MATERIAL SHALL BE PROPERLY DISPOSED OF OFF-SITE OR AS DIRECTED BY CONSTRUCTION MANAGER AND IN ACCORDANCE WITH JURISDICTIONAL AUTHORITIES.

M. LIVESTOCK PROTECTION

1. PROTECT AND SECURE LIVESTOCK. MAINTAIN AND SECURE EXISTING PERIMETER FENCE AND/OR GATE ENCLOSURES.

2. SITE PREPARATION

A. SCOPE OF WORK INCLUDES 1. PROTECTION OF EXISTING TREES, VEGETATION AND LANDSCAPING MATERIALS WHICH MIGHT BE DAMAGED BY CONSTRUCTION ACTIVITIES. 2. TRIMMING OF EXISTING TREES AND VEGETATION AS REQUIRED FOR PROTECTION DURING CONSTRUCTION ACTIVITIES.

- 3. CLEANING AND GRUBBING OF STUMPS, VEGETATION, DEBRIS, RUBBISH, DESIGNATED TREES AND SITE IMPROVEMENTS.

4. TOPSOIL STRIPPING AND STOCKPILING. 5. TEMPORARY EROSION CONTROL, SILTATION CONTROL, AND DUST TEMPORARY PROTECTION OF ADJACENT PROPERTY, STRUCTURES, BENCHMARKS, AND MONUMENTS.

7. PROTECTION AND TEMPORARY RELOCATION, STORAGE AND RE-INSTALLATION OF EXISTING FENCE AND OTHER SITE IMPROVEMENTS SCHEDULED FOR RE-USE.

8. REMOVAL AND LEGDK DISPOSAL OF CLEARED MATERIALS.

B. PRODUCTS AND MATERIALS (AS APPROVED BY CONSTRUCTION MANAGER OR AS NOTED IN CONSTRUCTION DOCUMENTS)

MATERIALS USED FOR TREE PROTECTION, EROSION CONTROL, SILTATION CONTROL, AND DUST CONTROL.

3. EARTHWORK

A. SCOPE OF WORK INCLUDES 1. EXCAVATION, TRENCHING, FILLING, COMPACTION, AND GRADING FOR STRUCTURES, SITE IMPROVEMENTS AND UTILITIES. 2. MATERIALS FOR SUB-BASE, DRAINAGE, BACKFILL AND GRAVEL FOR

SLABS, PAVEMENT AND IMPROVEMENTS.

 ROCK EXCAVATION WITHOUT BLASTING.
SUPPLY OF ADDITIONAL MATERIALS FOR OFFSITE AS REQUIRED. REMOVAL AND LEGDK DISPOSAL OF EXCAVATED MATERIAL AS REQUIRED.

B. QUALITY ASSURANCE 1. COMPACTION

WALKWAYS WILL OBTAIN A 95% COMPACTION AT A MINIMUM DRY DENSITY AS DETERMINED BY ASTM 0-1557 OR WITH PLUS OR MINUS 3% OF THE MOISTURE CONTENT

2. GRADING TOLERANCES OUTSIDE BUILDING LINES LAWNS, UNPAVED AREAS AND WALKS PLUS OR MINUS 1

INCH

B. UNDER PAVEMENTS PLUS OR MINUS 1/2 INCH. 3. GRADING TOLERANCES FOR FILL UNDER CONCRETE APPLICATIONS A. PLUS OR MINUS 1 INCH MEASURED WITH 10 FOOT STRAIGHT EDGE

C. PRODUCTS AND MATERIALS (AS APPROVED BY CONSTRUCTION MANAGER OR AS NOTED IN CONSTRUCTION DOCUMENTS)

1. SUB-BASE MATERIAL: GRADED MIXTURE OF NATURAL OR CRUSHED GRAVEL, CRUSHED STONE OR SLAG, AND NATURAL SAND. 2. WASHED MATERIAL, EVENLY GRADED MIXTURE OF CRUSHED STONE OR GRAVEL WITH 95% PASSING A 1-1/2 INCH SIEVE. 3. GRADING MATERIAL WILL CONSIST OF SATISFACTORY NATIVE OR IMPORTED SOIL MATERIALS FREE OF CLAY, ROCK OR GRAVEL NOT LARGER THAN 2 INCHES IN ANY DIMENSION, DEBRIS, WASTE, FROZEN MATERIALS AND OTHER UNSUITABLE MATERIALS WILL NOT BE ALLOWED FOR USE. IMPORTED MATERIALS SHALL HAVE A CLAY CONTENT OF NO MORE THAN 5%.

4. GRAVEL MATERIAL: EVENLY GRADED MIXTURE OF CRUSHED STONE OR GRAVEL WITH 95% PASSING A 1-1/2 INCH SIEVE. 5. GEOTEXTILE FABRIC: AS PER CONSTRUCTION DOCUMENTS.

D. CLEARING AND GRUBBING

1. REMOVE ALL VEGETATION AND MATERIALS AS REQUIRED. REMOVE STUMPS COMPLETELY UNDER FOUNDATIONS AND ROADWAYS. DISPOSE OF CLEARING AND GRUBBING OFF-SITE OR IN AN ON-SITE LOCATION APPROVED BY CONSTRUCTION MANAGER.

E. STRIPPING

STRIP NOT LESS 3 INCHES OF SOD AND TOPSOIL FROM AREAS THAT WILL UNDERLAY GRAVEL, PAVEMENT, NEW STRUCTURES OR EMBANKMENTS. STOCKPILE STRIPPING ON-SITE FOR RE-USE AND FINAL LANDSCAPING.

G. EMBANKMENT

CONSTRUCT EMBANKMENT TO THE LINES AND GRADES SHOWN ON THE DRAWING 2. CONSTRUCT EMBANKMENT FROM ON-SITE EXCAVATION MATERIAL WHEN

SUITABLE. USE IMPORTED BACKFILL ONLY AFTER AVAILABLE ON-SITE EXCAVATION MATERIAL HAS BEEN USED.

3. CONSTRUCT IN LIFTS OF NOT MORE THAN 12 INCHES IN LOOSE DEPTH. THE FULL WIDTH OF THE CROSS SECTION SHALL BE BROUGHT UP UNIFORMLY.

4. MATERIAL SHALL BE PLACED IN LAYERS AND SHALL BE NEAR OPTIMUM MOISTURE CONTENT BEFORE ROLLING TO OBTAIN THE PRESCRIBED COMPACTION. WETTING OR DRYING OF THE MATERIAL AND MANIPULATION TO SECURE A UNIFORM MOISTURE CONTENT THROUGHOUT THE LAYERS MAY BE REQUIRED. SUCH OPERATIONS SHALL BE INCLUDED IN THE APPROPRIATE BID ITEM. SHOULD THE MATERIAL BE TOO WET TO PERMIT PROPER COMPACTION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO UTILIZE MATERIAL WITH AN ACCEPTABLE MOISTURE CONTENT. DO NOT PLACE FROZEN MATERIAL IN THE EMBANKMENT AND DO NOT

PLACE EMBANKMENT MATERIAL UPON FROZEN MATERIAL 6. CONTRACTOR SHALL BE RESPONSIBLE FOR THE STABILITY OF EMBANKMENTS AND THE REPLACEMENT OF ANY PORTION WHICH HAS BECOME DISPLACED DUE TO CONTRACTOR'S OPERATIONS.

7. START LAYERS IN THE DEEPEST PORTION OF THE FILL AND AS

PLACEMENT PROGRESSES, CONSTRUCT LAYERS APPROXIMATELY PARALLEL TO THE FINISH GRADE LINE

6. ROUTE EQUIPMENT BOTH LOADED AND EMPTY, OVER THE FULL WIDTH OF THE EMBANKMENT TO ENSURE UNIFORMITY OF MATERIAL PLACEMENT. 9. COMPACT EMBANKMENT UNDERLYING NEW GRAVEL PAVING, FLOOR SLABS AND STRUCTURES TO BE 95% COMPACTION AT A MINIMUM DRY DENSITY AS DETERMINED BY ASTM 0-1557 OR WITHIN PLUS OR MINUS 3% OF OPTIMUM MOISTURE CONTENT. COMPACT NON-STRUCTURAL AREA EMBANKMENTS TO A MINIMUM OF 90% OF ASTM 0-1557.

H. SITE GRADING

1. USING ON-SITE EXCAVATION MATERIAL, SHAPE, TRIM, FINISH AND COMPACT SURFACE AREAS TO CONFORM TO THE LINES. GRADES AND CROSS SECTIONS SHOWN ON THE DRAWING OR AS DESIGNATED BY THE CONSTRUCTION MANAGER.

2. GRADE SURFACES TO DRAIN AND ELIMINATE ANY PONDING OR FROSION

3. ELIMINATE WHEEL RUTS BY REGRADING.

4. COMPACT AREAS OF UNDERLYING NEW GRAVEL, PAVING, FLOOR SLABS AND STRUCTURES TO BE AT 95% COMPACTION AT A MAXIMUM DRY DENSITY AS DETERMINED BY THE ASTM 0-1557 OR WITHIN PLUS OR MINUS 3% OF OPTIMUM MOISTURE CONTENT.

5. CONSTRUCT FINISH SURFACE OF SITE GRADING AREAS WITHIN 1 INCH FROM SPECIFIED GRADE.

SUBGRADE PREPARATION

1. SHAPE TOP OF SUBGRADE TO THE LINES AND GRADES SHOWN ON THE DRAWINGS

2. MAINTAIN TOP OF SUBGRADE IN A FREE-DRAINING CONDITION. 3. DO NOT STOCK PILE MATERIAL ON TOP OF SUBGRADE UNLESS AUTHORIZED BY CONSTRUCTION MANAGER.

4. COMPACT THE TOP 12 INCHES OF SUBGRADE TO A 95% COMPACTION AT A MAXIMUM DRY DENSITY AS DETERMINED BY ASTM 0-1557 OR WITHIN PLUS OR MINUS 3% OF THE OPTIMUM MOISTURE CONTENT. 5. CONSTRUCT TOP OF SUBGRADE WITHIN 1 INCH OF ESTABLISHED GRADE AND CROSS SECTION.

J. GEOTEXTILE FABRIC

1. LAY GEOTEXTILE FABRIC OVER COMPACTED SUBGRADE IN THE COMPOUND AREA AND UNDER LENGTH OF ROAD (WHEN REQUIRED). LAP ALL JOINTS TO A MINIMUM OF 36 INCHES.

K. GRAVEL SURFACING

1. CONSTRUCT GRAVEL SURFACING AREAS USING CRUSHED AGGREGATE BASE AND FINISH COURSES AS SPECIFIED BY CONSTRUCTION MANAGER. SPREAD GRAVEL AND RAKE TO OBTAIN A UNIFORM SURFACE AREA.

I LANDSCAPING

1. FURNISH, INSTALL AND MAINTAIN LANDSCAPE WORK AS SHOWN AND/OR REQUIRED WITHIN THE CONSTRUCTION DOCUMENTS OR AS SPECIFIED IN THE CONSTRUCTION SPECIFICATIONS.

M. CONCRETE FORM WORK

1. FORMS: SMOOTH AND FREE OF SURFACE IRREGULARITIES. UTILIZE FORM RELEASE AGENTS. 2. CHAMFER EXPOSED EDGES OF ALL TOWER FOUNDATION SHALL

RECEIVE A ⅔ INCH BY ⅔ INCH 45 DEGREE CHAMFER. OTHER EXPOSED EDGES SHALL RECEIVE A TOOLED RADIUS FINISH.

UPON COMPLETION, REMOVE ALL FORMS INCLUDING THOSE CONCEALED OR BURIED.

4. REFER TO STRUCTURAL DRAWINGS FOR ADDITIONAL REQUIREMENTS.

4. GENERAL NOTES

- PROGRESSION IS NOT INTERRUPTED.
- 2. THE CONTRACTOR IS RESPONSIBLE FOR MAINTAINING A NEAT AND
- MOOTH EVEN-TEXTURED SURFACE. SUCH PIPELINES, SUBSURFACE STRUCTURES AND/OR UTILITIES IN LOCATOR COMPANY.
- THE OWNER'S REPRESENTATIVE
- PRIVATE PROPERTY TO AT LEAST AS GOOD OF CONDITION AS REPRESENTATIVE.
- BE REPLACED.
- SHORING SHALL BE DONE IN ACCORDANCE WITH OSHA REGULATIONS FOR CONSTRUCTION.

AND THE TOWER.

DEVELOPMENT

SHALL BE COORDINATED WITH THE OWNER OR OWNER'S REPRESENTATIVE BEFORE EACH AND EVERY CONNECTION TO EXISTING SYSTEMS IS MADE. 12MAINTAIN FLOW FOR ALL EXISTING UTILITIES

INSTALLATION OF UTILITIES.

UNLESS OTHERWISE NOTED.

1. IT IS THE CONTRACTOR'S RESPONSIBILITY TO EXAMINE ALL PLAN SHEETS AND SPECIFICATIONS AND COORDINATE HIS WORK WITH THE WORK OF ALL OTHER CONTRACTORS TO ENSURE THAT WORK

ORDERLY SITE, YARD AND GROUNDS. CONTRACTOR SHALL REMOVE AND DISPOSE OFF SITE ALL RUBBISH, WASTE MATERIAL, LITTER AND ALL FOREIGN SUBSTANCES. REMOVE PETROCHEMICAL SPILLS, STAINS AND OTHER FOREIGN DEPOSITS. RAKE GROUND TO A

3. THE PLANS SHOW SOME KNOWN SUBSURFACE STRUCTURE ABOVE GROUND STRUCTURES AND/OR UTILITIES BELIEVED TO EXIST IN THE WORKING AREA, EXACT LOCATION OF WHICH MAY VARY FROM THE LOCATION INDICATED. IN PARTICULAR THE CONTRACTOR IS WARNED THAT THE EXACT OR EVEN APPROXIMATE LOCATION OF

THE AREA MAY BE SHOWN OR MAY NOT BE SHOWN AND IT SHALL BE HIS RESPONSIBILITY TO PROCEED WITH GREAT CARE IN 48 HOURS BEFORE YOU DIG, DRILL OR BLAST CALL LOCAL UTILITIES

4. THE OWNER OR OWNER'S REPRESENTATIVE SHALL BE NOTIFIED IN WRITING OF ANY CONDITIONS THAT VARY FROM THOSE SHOWN ON THE PLANS. THE CONTRACTOR'S WORK SHALL NOT VARY FROM THE PLANS WITHOUT THE EXPRESSED APPROVAL OF THE OWNER OR

5. THE CONTRACTOR IS INSTRUCTED TO COOPERATE WITH ANY AND ALL OTHER CONTRACTORS PERFORMING WORK ON THE SITE DURING THE PERFORMANCE OF THIS CONTRACT.

6. THE CONTRACTOR SHALL RESTORE ALL DAMAGED, PUBLIC OR BEFORE DISTURBED AS DETERMINED BY THE OWNER OR OWNER'S

7. THE CONTRACTOR SHALL COMPLY WITH ALL REQUIRED PERMITS. 8. THE CONTRACTOR SHALL PROTECT EXISTING PROPERTY LINE MONUMENTATION. ANY MONUMENTATION DISTURBED OR DESTROYED, AS JUDGED BY THE OWNER OR OWNER'S REPRESENTATIVE, SHALL

9 ALL TRENCH EXCAVATION AND ANY REQUIRED SHEETING AND

10.CONTRACTOR SHALL BE RESPONSIBLE FOR DEWATERING AND THE MAINTENANCE OF SURFACE DRAINAGE DURING THE COURSE OF

11ALL UTILITY WORK INVOLVING CONNECTIONS TO EXISTING SYSTEMS

13ALL SITE FILL SHALL MEET SELECTED FILL STANDARDS AS DEFINED BY THE OWNER OF OWNER'S REPRESENTATIVE ON THE DRAWINGS OR GEOTECHNICAL REPORT RECOMMENDATIONS

14CONTRACTOR TO GRADE ALL AREAS OF THE SITE TO PROVIDE POSITIVE DRAINAGE AWAY FROM THE BUILDING OR EQUIPMENT PAD

AND THE LOWER. ISIF NECESSARY, THE CONTRACTOR IS RESPONSIBLE FOR REPAIRING AND REGRADING ROADWAY AND ANY DISTURBED AREAS FOLLOWING

16NO COMMERCIAL MESSAGES TO BE DISPLAYED ON TOWER 17WATER AND SEWER SERVICES ARE NOT REQUIRED FOR THE

18THE CONTRACTOR SHALL FURNISH AND INSTALL ALL MATERIAL

19ELECTRICAL DRAWINGS HAVE BEEN REVIEWED AND SEALED FOR STRUCTURAL PURPOSES ONLY.

AT&T

DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY.

SUBMITTALS				
REV	DATE	DESCRIPTION	BY	
A	12/11/19	90% CD	SAR	
в	12/26/19	90% CD	KSN	
с	01/14/20	90% CD	GOP	
D	01/21/20	90% CD	PTN	
0	02/11/20	90% CD	SAR	

2 - 12 - 2020

"I CERTIFY THAT THESE DOCUMENTS WERE PREPARED BY OR APPROVED BY ME AND THAT I AM A DULY LICENSED ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND NUMBER 27217, EXPIRATION DATE 3/26/2020. ICENSE

PROJECT TITLE

USID: 100205 FA#: 10128448

GILL

9727 MOUNT PISGAH ROAD SILVER SPRING, MD 20903

EXISTING BUILDING

SHEET DESCRIPTION

GENERAL NOTES

SHEET NO.

GN-1