

[^0]

The photo design image below provided by the applicant details 97.5^{\prime} monopole, the existing T Mobile antennas on the monopole and the proposed Dish Wireless antennas indicated with a red arrow.

Attachments: Application

Comments: The proposed antennas will be mounted at the RAD Center of 90' on the existing monopole. The equipment cabinet will be placed on a new 5'x7' metal platform to be installed within the existing equipment compound. All proposed antennas meet the length and volume requirements set forth in the Montgomery County Ordinance, with the maximum length of the proposed antenna being 72 " for a total volume of $6.67 \mathrm{ft}^{3}$.

The application states that the maximum effective radiated power (Max ERP) for this installation will be greater than the permissible exposure limits set forth by the FCC and thus a routine environmental evaluation was required. CTC verified that the submitted radio frequency electromagnetic energy (RF EME) report concluded that the site would be compliant with FCC standards for limiting human exposure to radio frequency electromagnetic energy fields upon implementation of mitigation measures that include appropriate signage.

A structural analysis provided by SGS Towers, dated February 23, 2021, was submitted with the application, and considered the proposed attachments. It concluded that the existing structure would have adequate structural capacity to support the new attachments.

We recommend this application.

Application General Infomation				
Applicant Name	Jacobs Telecommunications	Updated		7/19/2021
Application Type	Colocated	Ann. Plan?	Yes	
Carrier	Other	Will site be used to support government telecommunications facilities or other equipment for government use?		
Solution Type	Other			
Existing	Existing			
		Application Description		
Install (3) Panel Antennas (1 per sector) on (1) Antenna Mount. Install (6) Radio Units (2 per sector), (1) OVP Device, (1) Hybrid Cable and associated jumpers on existing telecommunications tower. Install (1) metal platform for (2) cabinets, (1) ice bridge, (1) telco-fiber box, (1) GPS unit, (1) safety switch, (1) ciena box, and (1) meter socket on the ground beneath the tower.				

App No:

Screening considerations(New, Colocations, Replacement Apps Only):
This is an existing communications tower without concealment. It is the Applicant's impression that concealment was not required when the tower was zoned.

App No

Antenna Model JMA MX08FRO665-20_V0F
Frequency 642-647; 688-693; 722-728; 1915-1920; 1995-2000; 2000-2020; 2180-2200
RAD Center $\quad 90$ Max ERP $\quad 9064$ Antenna Dimensions $72^{\prime \prime} \times 20$ " $\times 8^{\prime \prime} \quad$ Quantity \square

W I R E L E S S

MX08FRO665-20

NWA ${ }^{\text {TM }}$ X-Pol 8-Port Antenna

X-Pol 8-Port 6 ft 65° Fast Roll Off with Smart Bias-Ts:

4 ports 617-894 MHz and 4 ports $1695-2200 \mathrm{MHz}$

- Fast Roll Off (FRO ${ }^{\text {TM }}$) azimuth beam pattern improves Intra- and Inter-cell SINR
- Excellent passive intermodulation (PIM) performance reduces harmful interference.
- Fully integrated (iRETs) with Smart Bias-Ts \& independent RET control for low and mid bands for ease of network optimization
- SON-Ready array spacing supports beamforming capabilities.
- High total power handling to maximize network efficiency
- Reduced tower loading for ease of site deployment

Fast Roll-Off antennas increase data throughput without compromising coverage

The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference \& Noise Ratio (SINR) by eliminating overlap between sectors .

Non-FRO antenna

Large traditional antenna pattern overlap creates harmful interference. JMA's FRO antenna pattern minimizes overlap, thereby minimizing interference.

LTE throughput	SINR	Speed $(\mathrm{bps} / \mathbf{H z})$	Speed increase	CQI
Excellent	>18	>4.5	$333+\%$	$8-10$
Good	$15-18$	$3.3-4.5$	277%	$6-7$
Fair	$10-15$	$2-3.3$	160%	$4-6$
Poor	<10	<2	0%	$1-3$

The LTE radio automatically selects the best throughput based on measured SINR.

JMA FRO antenna

Electrical specification (minimum/maximum)	Ports 1, 2, 3, 4		Ports 5, 6, 7, 8		
Frequency bands, MHz	617-698	698-894	1695-1880	1850-1990	1920-2200
Polarization	$\pm 45^{\circ}$		$\pm 45^{\circ}$		
Gain over all tilts, max, dBi	13.9	15.0	17.9	18.0	18.8
Horizontal beamwidth (HBW), degrees ${ }^{1}$	68	62	64	61	62
Front-to-back ratio, co-polar power @180 ${ }^{\circ}$, dB	>27	>29	>32	>35	>32
Vertical beamwidth (VBW), degrees ${ }^{1}$	14.2	12.5	5.4	5.2	4.9
Electrical downtilt (EDT) range, degrees	2-14		2-12		
First upper side lobe (USLS) suppression, dB^{1}	≤-16.0	≤-16.5	≤-18.0	≤-18.0	≤-18.0
Minimum cross-polar isolation, port-to-port, dB^{1}	25	25	25	25	25
Max VSWR / return loss, dB	1.5:1 / -14.0		1.5:1 / -14.0		
Max passive intermodulation (PIM), 2x20W carrier, dBc	-153		-153		
Max input power per any port, watts	300		250		
Total composite power all ports (1-8), watts ${ }^{2}$	1500				

1 Typical value over frequency and tilt

Electrical specification (minimum/maximum)	Ports 1, 2, 3,4		Ports 5, 6, 7, 8		
Frequency bands, MHz	$617-698$	$698-894$	$1695-1880$	$1850-1990$	$1920-2200$
Average gain over all tilts, dBi (Gain Tolerance)	13.2 ± 0.7	14.4 ± 0.6	17.5 ± 0.4	17.4 ± 0.4	18.3 ± 0.5
Horizontal beamwidth tolerance (HBW), degrees ${ }^{\mathbf{1}}$	± 5	± 6.5	± 5.5	± 3.5	± 5.0
Vertical beamwidth tolerance (VBW), degrees	± 0.3				
Front-to-back ratio, co-polar power @180$\pm \mathbf{3 0}{ }^{\circ}, \mathbf{d B}$	>27	>25	>25	>26	>24
X-Pol discrimination (CPR) at boresight, dB	>20	>19	17.5	>19	>20
First upper side lobe (USLS) suppression boresight to $\mathbf{2 0}^{\circ}$, dB $^{\mathbf{1}}$	≤-16	≤-15	≤-16	≤-16	≤-16

Mechanical specifications

Dimensions height/width/depth, inches (mm)	$72.0 / 20.0 / 8.0(1828.8 / 508.0 / 203.2)$
Shipping dimensions length/width/height, inches (mm)	$77.3 / 23.8 / 14.5(1963.42 / 605 / 368)$
No. of RF input ports, connector type, and location	$8 \times 4.3-10$ female, bottom
RF connector torque	$96 \mathrm{lbf} \cdot \mathrm{in}(10.85 \mathrm{~N} \cdot \mathrm{~m}$ or $8 \mathrm{lbf} \cdot \mathrm{ft})$
Net antenna weight, lb (kg)	$54(24.5)$
Shipping weight, lb (kg)	$94(42.6)$
Antenna mounting and downtilt kit included with antenna	91900318
Net weight of the mounting and downtilt kit, lb (kg)	$18(8.2)$
Range of mechanical up/down tilt	-2° to 12°
Rated wind survival speed, mph (km/h)	$150(241)$
Frontal and lateral wind loading @ 150 km/h, lbf (N)	$108.1(480.9), 20.5(91.2)$
Effective projected area @ 150 km/h (EPA), frontal, sq ft	4.9

MX08FRO665-20
NWA $V^{\text {TM }}$ X-Pol 8-Port Antenna
Front view Back view

Bottom view

MX08FRO665-20

W LRELESS
NWA $V^{\text {TM }}$ X-Pol 8-Port Antenna
Remote electrical tilt (RET 1000) information

RET location	Integrated into antenna
RET interface connector type	8-pin AISG connector per IEC 60130-9 or RF port Bias-T
RET connector torque	Min $0.5 \mathrm{~N} \cdot \mathrm{~m}$ to max $1.0 \mathrm{~N} \cdot \mathrm{~m}$ (hand pressure \& finger tight)
RET interface connector quantity	2 pairs of AISG male/female connectors and 2 RF port Bias-Ts, ports $1 \& 5$
RET interface connector location	Bottom of the antenna
Total no. of internal RETs $\mathbf{6 1 7} \mathbf{- 8 9 4} \mathbf{~ M H z}$	1
Total no. of internal RETs $\mathbf{1 6 9 5 - 2 2 0 0} \mathbf{~ M H z}$	1
RET input operating voltage, vdc	$10-30$
RET max power consumption, idle state, \mathbf{W}	≤ 2.0
RET max power consumption, normal operating conditions, \mathbf{W}	≤ 10.0
RET communication protocol	Hardware AISG 3.0; firmware AISG 2.0, field-upgradable to AISG 3.0

RET and RF connector topology

Each RET device can be controlled either via the designated external AISG connector or RF port as shown below:

Array topology
4 sets of radiating arrays
R1: 617-894 MHz
R2: 617-894 MHz
B1: 1695-2200 MHz
B2: 1695-2200 MHz

Fujitsu - DiSH Triple-band RU Technical Specifications

RU General Specification	
Part number	TA08025-B605
TRX Configuration	4T4R
Operating Frequency	n 71 \& n29 \& n26 Frequencies (Triple-Band)
Instantaneous Bandwidth	$\begin{gathered} \text { n71: } 35 \mathrm{MHz} \\ \text { n29: } 11 \mathrm{MHz} \\ \text { n26: } 7 \mathrm{MHz} \end{gathered}$
Operation Bandwidth (3GPP)	$\begin{gathered} \mathrm{n} 71: 35 \mathrm{MHz} \\ \mathrm{n} 29: 10 \mathrm{MHz} \\ \mathrm{n} 26: 5 \mathrm{MHz} \end{gathered}$
CC BW	5/10/20 MHz
Capacity	$\begin{gathered} \mathrm{n} 71: 2 \mathrm{Cr}(5 / 10 / 20 \mathrm{MHz}) / \mathrm{NB}-\mathrm{IOT} \\ \mathrm{n} 26: 1 \mathrm{Cr}(5 \mathrm{MHz}) / \mathrm{NB}-\mathrm{IOT} \\ \mathrm{n} 29: 2 \mathrm{Cr}(5 / 10 \mathrm{MHz}) \end{gathered}$
Interface to DU	ORAN 7.2x / 10G optical IF
TX Specification	
Output Power per TX	n71: 30W per port n29: 40W per port n26: 10 W per port
ACLR	Compliant with 3GPP TS 38.104
Transmitter Spurious Emissions	Compliant with 3GPP TS 38.104
EVM	Compliant with 3GPP TS 38.104
RX Specification	
Noise Figure	2.5 dB (normal condition 2.2 dB)
Blocking Features	Compliant with 3GPP TS 38.104
Receiver spurious emissions	Compliant with 3GPP TS 38.104
Mechanical Specification	
Volume	35 L
Dimension	$\mathrm{W}: 400 \mathrm{~mm}, \mathrm{H}: 380 \mathrm{~mm}$, D: 230 mm
Antenna Connector Type	4.3-10 RF connector
Antenna Control Interface	AISG
Power Supply	DC -58~-36V
Power Consumption	<1300W
Weight	34 kg
Environmental	
Humidity (Absolute humidity)	$0.03 \mathrm{~g} / \mathrm{m} 3 \sim 30 \mathrm{~g} / \mathrm{m} 3$
Atmospheric Pressure	Between 70 kPa and 106 kPa
Operating Temperature	$-40^{\circ} \mathrm{C} \sim+55^{\circ} \mathrm{C}$
IP Rating	IP65
Cooling	Passive

Mounting Options		
Pole	TBD	
Wall	TBD	

Base/Tower/Rooftop Solution for RRH Applications RDIDC-9181-PF-48

The deployment of Remote Radio Head (RRH) architecture poses unique challenges to the mobile telecom industry.

Raycap's innovative RRH protection solutions mitigate the risk of damage due to lightning
and provide high levels of availability and reliability to radio equipment.

Features

- Employs the Strikesorb ${ }^{\circledR}$ 30-V1-2CFV Surge Protective Device (SPD) specifically designed for the Remote Radio Head (RRH) installation environment and certified for use in DC applications and at low DC operating voltages (48V)
- The Strikesorb 30-V1-2CFV is a Class I SPD, certified by VDE per the IEC 61643-11 standard as suitable for installation in areas where direct lightning exposure is expected. Strikesorb 30-V1-2CFV is able to withstand direct lightning currents of up to $12.5 \mathrm{kA}(10 / 350)$ and induced surge currents of up to 60kA (8/20).
- Provides very low let through / clamping voltage - unique for a Class I product - as it does not employ spark gaps or other switching elements. Strikesorb offers unique protection levels to the RRH equipment as well as the Base Band Units
- For individual circuit per radio architecture
- Configurable cable ports are designed to accommodate varying diameters of hybrid (combined power and fiber optic) or standard cables
- Fully recognized to the UL 1449 4th Edition Safety Standard
- Patent pending design

Benefits

- Offers unique maintenance-free protection against direct lightning currents
- Protects up to 9 Remote Radio Heads and connects up to 18 fiber pairs
- Utilizes a NEMA 4X rated enclosure, allowing for indoor or outdoor installation at the base, on a roof or tower top

© 2020 Raycap All rights reserved.
G02-01-946 200414

Base/Tower Solution for RRH Applications RDIDC-9181-PF-48

Electrical	
Model Number	RDIDC-9181-PF-48
Nominal Operating Voltage	48 VDC
Nominal Discharge Current [${ }_{\mathrm{n}}$]	$20 \mathrm{kA} \mathrm{8/20} \mathrm{\mu s}$
Maximum Surge Current [$I_{\max }$]	$60 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$
Maximum Impulse (Lightning) Current per IEC 61643-11	12.5kA 10/350 $\mu \mathrm{s}$
Maximum Continuous Operationg Voltage [$U_{\text {c }}$]	75VDC
Response Time [t_{A}]	$<1 \mathrm{~ns}$
Voltage Protection Rating (VPR) per UL 1449 4th Edition	400 V
Let-through Voltage @ 20kA (8/20)	<410V
Let-through Voltage @ 10kA (8/20)	<330V
Voltage Protection Level (VPL) per IEC 61643-11	<200V @ 12.5kA 10/350 s
Fault Monitoring	Local status indicator - dry contact alarm
Circuit Configuration	Parallel; -48VDC suppy-return, return-ground
Protection Class as per IEC 61643-1	Class I
Incoming Power/Fiber	Power: \#10/8/6/4/2 AWG (6 mm² 33.6 mm ${ }^{2}$) power trunk Fiber: LC/LC
Strikesorb Module Type	$30-\mathrm{V} 1-2 \mathrm{CFV}$
Mechanical	
Suppression Connection Method	Compression lug, \#14-\#2 AWG (2.1 mm² -33.6 mm²) Copper; \#12-\#2 AWG (3.3 mm² 33.6 mm²) Aluminum
Fiber Connection Method	24 LC-LC Single mode
Environmental Rating	NEMA 4X
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
UV Resistant	Yes
Combined Wind Load	150 mph (sustained): $110.5 \mathrm{lbs}(491.5 \mathrm{~N}) 195 \mathrm{mph}$ (gust): 186 lbs (827.4N)
Dimensions	$14^{\prime \prime} \times 16^{\prime \prime} \times 8$ "
Estimated Weight	21.85 lbs

Optional Product Configurations
Bridge Kit (required for base unit when pairing with HCS 1.0 legacy cable) Order Part \#: RTMDC-5634-WB-KIT
Standards Gompliance $\&$ Gertifications
Strikesorb modules are compliant to the following Surge Protective Device (SPD) Standards
Standards ANSI/UL 1449 4th Edition, IEEE C62.41, NEMA LS-1, IEC 61643-11 (Class I Protection), IEC 61643-12, EN 61643-11:2002 (including A11:2007)

Product Diagram

Raycap

AWG=American Wire Gauge

C

Prepared by:

SGS Towers
Sinnott Gering and Schmitt Towers, Inc.
10834 Old Mill Rd Suite 8 Omaha, NE 68154
(402)-575-8885

Engineering@sgstowers.com

Structural Analysis Report

Table of Contents

Introduction 1
Existing Structural Information 1
Final Proposed Equipment Loading for DISH Wireless L.L.C. 1
Design Criteria 2
Analysis Results 2
Assumptions 2
Conclusions 3
Calculations Attached
Collocation Application Attached

Design Criteria

The tower was analyzed using tnxTower (Version 8.0.7.5) software to find the internal loads using the following design criteria.

State	Maryland
City / County Building Code	Montgomery County (IBC 2018)
Standard Codes	TIA-222-H
Basic Wind Speed	$113 \mathrm{MPH}($ Vult $)$
Basic Wind Speed w/ Ice	$40 \mathrm{MPH} \mathrm{w} / 1.0$ " Ice

Note: A seismic analysis has been performed and is not controlling.

Analysis Results

Based on the foregoing information, our structural analysis determined that the existing tower is structurally capable of supporting the proposed equipment loads without modification. The base plate and anchor bolts have also been evaluated and are found to be structurally capable of supporting the proposed equipment loads without modification. The structural design report (EEI, Project No. 13160, Drawing No. D13160-98.1) analyzed for drilled pier foundation. An analysis for drilled pier foundation was performed and it was determined to be structurally capable of supporting the proposed equipment loads without modifications.

Assumptions

1. The existing tower has been maintained to manufacturer's specifications and is in good condition.
2. All member connections are considered to have been designed to meet the load carrying capacity of the connected members.
3. Antenna mount loads have been estimated based on generally accepted industry standards.
4. The mounts for the proposed antennas have been analyzed and designed by others.
5. Ultimate Bearing value and blow count for soil has been taken from TIA-222-H, ANNEX F Table F-1:Presumptive Soil Parameters to perform foundation analysis.

Introduction

We have completed our structural analysis of the proposed equipment installation on the foregoing Monopole to determine its ability to support the new loads proposed by DISH Wireless L.L.C. The objective of the analysis is to determine if the Monopole meets the current structural codes and standards with the proposed equipment installation.

Existing Structural Information

The following documents for the existing structure were made available for our structural analysis.

Tower Information	Engineered Endeavors Incorporated, Structural Design Report / Project No: 13160, Drawing No. GS55637, dated August 9, 2005
Foundation Information	Engineered Endeavors Incorporated, Structural Design Report / Project No: 13160, Drawing No. D13160-98.1, dated August 9, 2005
Equipment Information	DISH Wireless - Vertical Bridge Collocation Application No. C-103052 Version 2, dated February 12, 2021. T-Mobile - Loading provided by Vertical Bridge on February 18, 2021
Tower Reinforcement Information	Tower has not been previously reinforced

Final Proposed Equipment Loading for DISH Wireless L.L.C.

The following proposed loading was obtained from the Vertical Bridge Collocation Application:

Antenna/Equipment					Coax	
Mount (ft.)	RAD (ft.)	Qty.	Antenna	Type	Qty.	Size/Type
90.0	-	1	Platform Mount w/ Handrails	Mount	1	1.6" Hybrid
	90.0	6*	JMA MX08FRO665-20_V0F	Panel		
		6*	Fujitsu TA08025-B604	RRU		
		6*	Fujitsu TA08025-B605	RRU		
		1	Raycap RDIDC-9181-PF-48	$\begin{gathered} \hline \text { Junction } \\ \text { Box } \end{gathered}$		

Note: Proposed equipment shown in bold.
Note: Proposed feed lines to be placed on the outside of the pole.
Note: Remainder of T-Mobile reserved rights are considered in the analysis
Note: Remainder of Dish reserved rights are considered in the analysis.
Note: *Designates that half of the quantity is reserved loading.
Note: For all other existing equipment please refer to the tower profile and attached tnxTower output.

Conclusions

The existing tower described above has sufficient capacity to support the proposed loading based on the two governing codes referenced above. The base plate, anchor bolts and foundation have also been evaluated and have sufficient capacity to support the proposed loads.

We appreciate the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance, please call us anytime at 402-575-8885.

Sincerely,

Analysis by:
Reviewed by:

Ravi Siddharth Raja, EI
Project Engineer
Nicholas J. Schmitt, P.E., S.E.
Vice President

Attachment 1:
 Calculations

DESIGNED APPURTENANCE LOADING

| MATERIAL STRENGTH |
| :--- | :--- | :---: | :---: | :---: | :---: |
| GRADE Fy Fu GRADE Fy Fu
 A572-65 65 ksi 80 ksi |

TOWER DESIGN NOTES

1. Tower is located in Montgomery County, Maryland.
2. Tower designed for Exposure C to the TIA-222-H Standard.
3. Tower designed for a 113 mph basic wind in accordance with the TIA-222-H Standard.
4. Tower is also designed for a 40 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Risk Category II.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TOWER RATING: 98.7\%

TORQUE $46 \mathrm{lb}-\mathrm{ft}$ 40 mph WIND - 1.0000 in ICE

TORQUE $120 \mathrm{lb-ft}$ REACTIONS - 113 mph WIND

SGS Towers
Chapell Hill,
NC
Phone: engineering@sgstowers.com
FAX:

${ }^{\text {Job: }}$ SGS\# 2101548		
Project: BOE - Richard D Riddle School (US-MD-5072)		
Client: Vertical Bridge	Drawn by: Ravi Siddharth Raja	App'd:
Code: TIA-222-H	Date: 02/23/21	Scale: NTS
	Ster	${ }^{\text {No. }} \mathrm{E}-1$

TIA-222-H - 113 mph/40 mph 1.0000 in Ice Exposure C Leg Capacity Leg Compression (lb)

SGS TowersChapell Hill,NCPhone: engineering@sgstowers.comFAX.	${ }^{\text {Pob: }}$ SGS\# 2101548		
	Project: BOE - Richard D Riddle School (US-MD-5072)		
	Client: Vertical Bridge	Drawn by: Ravi Siddharth Raja	App'd:
	Code: TIA-222-H	Date: 02/23/21	Scale: NTS
	Path:		Dwg No. E-3

SGS Towers
Chapell Hill,
NC
Phone: engineering@sgstowers.com
${ }^{\text {Pob: }}$ SGS\# 2101548
Project: BOE - Richard D Riddle School (US-MD-5072)
Client: Vertical Bridge \quad Drawn by: Ravi Siddharth Raja ${ }^{\text {Ap }}$
C

Twist (deg)

SGS Towers
Chapell Hill,
NC
Phone: engineering@sgstowers.com

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & \\ & \\ & 1 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
NC Phone: engineering@sgstowers.com FAX. FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower is located in Montgomery County, Maryland.
Tower base elevation above sea level: 371.97 ft .
Basic wind speed of 113 mph .
Risk Category II.
Exposure Category C.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height: 0.00 ft .
Nominal ice thickness of 1.0000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 40 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.05 .
Tower analysis based on target reliabilities in accordance with Annex S.
Load Modification Factors used: $\mathrm{K}_{\text {es }}\left(\mathrm{F}_{\mathrm{w}}\right)=0.95, \mathrm{~K}_{\text {es }}\left(\mathrm{t}_{\mathrm{i}}\right)=0.85$.
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
$\sqrt{ }$ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas
Add IBC .6D+W Combination
Sort Capacity Reports By Component
Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption Poles
Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No Appurtenances
Outside and Inside Corner Radii Are
Known

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & \\ & 2 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	BOE - Richard D Riddle School (US-MD-5072)		$\begin{aligned} & \text { Date } \\ & \text { 19:35:07 02/23/21 } \end{aligned}$
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section	Elevation ft	Section Length $f t$	Splice Length $f t$	Number of Sides	Top Diameter in	$\begin{gathered} \text { Bottom } \\ \text { Diameter } \\ \text { in } \\ \hline \end{gathered}$	Wall Thickness in	Bend Radius in	Pole Grade
L1	97.50-50.79	46.71	3.42	18	16.0000	23.0500	0.1875	0.7500	A572-65
									(65 ksi)
L2	50.79-1.50	52.71		18	22.1588	30.0000	0.2500	1.0000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$

Tapered Pole Properties

Section	Tip Dia.	Area $i n^{2}$	$\begin{gathered} I \\ i n^{4} \end{gathered}$	in	C	I / C $i n^{3}$	$\begin{gathered} J \\ i n^{4} \end{gathered}$	$I t / Q$	$\begin{aligned} & w \\ & i n \\ & \text { in } \end{aligned}$	w / t
L1	16.2179	9.4104	297.2674	5.6134	8.1280	36.5733	594.9259	4.7061	2.4860	13.259
	23.3767	13.6060	898.4973	8.1162	11.7094	76.7330	1798.1770	6.8043	3.7268	19.876
L2	22.9787	17.3846	1054.2438	7.7776	11.2567	93.6550	2109.8748	8.6940	3.4600	13.84
	30.4242	23.6066	2639.6436	10.5612	15.2400	173.2050	5282.7605	11.8056	4.8400	19.36

Tower Elevation ft	Gusset Area (per face) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1 97.50-50.79				1	1	1.05			
L2 50.79-1.50				1	1	1.05			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque Calculation	Component Type	Placement ft	Total Number	Number Per Row	Start/End Position	Width or Diameter in	Perimeter in	Weight plf
Safety Line 3/8	A	No	Surface Ar (CaAa)	97.50-1.50	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	0.3750		0.22
*** Step Bolts	A	No	Surface Ar (CaAa)	97.50-1.50	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	0.6250		0.51
$* * *$ $* * *$ $1.6^{\prime \prime}$ (Dish Wireless) $* * *$	C	No	$\begin{aligned} & \text { Surface Ar } \\ & (\mathrm{CaAa}) \end{aligned}$	90.00-3.00	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	1.6000		1.35

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Component Type	Placement ft	Total Number		$\begin{aligned} & C_{A} A_{A} \\ & f t^{2} / f t \end{aligned}$	Weight $p l f$
$\begin{aligned} & \text { *** } \\ & * * * \end{aligned}$									
7/8" Coax	C	No	No	Inside Pole	97.50-3.00	1	No Ice	0.00	1.54

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & \\ & 3 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	Component Type	Placement $f t$	Total Number		$\begin{gathered} C_{A} A_{A} \\ f t^{2} / f t \end{gathered}$	Weight plf
(T-Mobile)							1/2" Ice	0.00	1.54
***							$1{ }^{\prime \prime}$ Ice	0.00	1.54
1-1/4" Coax	C	No	No	Inside Pole	97.50-3.00	1	No Ice	0.00	0.50
(T-Mobile)							1/2" Ice	0.00	0.50
							$1{ }^{\prime \prime}$ Ice	0.00	0.50

1-5/8" Coax	C	No	No	Inside Pole	97.50-3.00	1	No Ice	0.00	0.82
(T-Mobile)							1/2" Ice	0.00	0.82
							$1{ }^{\prime \prime}$ Ice	0.00	0.82

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation $f t$	Face	A_{R}	A_{F}	$C_{A} A_{A}$ In Face	$C_{A} A_{A}$ Out Face	Weight
	$f t$		$f t^{2}$	$f t^{2}$	$f t^{2}$	$f t^{2}$	$l b$
L1	$97.50-50.79$	A	0.000	0.000	4.671	0.000	34.19
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	6.274	0.000	186.52
L2	$50.79-1.50$	A	0.000	0.000	4.929	0.000	36.08
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	7.646	0.000	201.20

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation $f t$	Face or Leg	Ice Thickness in	A_{R}	A_{F}	$C_{A} A_{A}$ In Face	$C_{A} A_{A}$ Out Face	Weight
	ft	ft		$f t^{2}$	$f t^{2}$	$f t^{2}$	lb	
L1	$97.50-50.79$	A	0.920	0.000	0.000	21.868	0.000	183.40
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	13.491	0.000	297.65
L2	$50.79-1.50$	A	0.831	0.000	0.000	23.076	0.000	193.53
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	16.444	0.000	336.64

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$	$C P_{Z}$
			Ice	Ice	
	$f t$	in	in	in	in
L1	$97.50-50.79$	-0.6037	0.6640	-1.3903	0.2698
L2	$50.79-1.50$	-0.6189	0.7909	-1.4956	0.4122

[^1]

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	K_{a} Ice
L1	1	Safety Line 3/8	$50.79-97.50$	1.0000	1.0000
L1	3	Step Bolts	$50.79-97.50$	1.0000	1.0000
L1	$1.6^{\prime \prime}$	$50.79-90.00$	1.0000	1.0000	
L2	6	Safety Line 3/8	$1.50-50.79$	1.0000	1.0000
L2	1	Step Bolts	$1.50-50.79$	1.0000	1.0000
L2	$1.6^{\prime \prime}$	$3.00-50.79$	1.0000	1.0000	

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
○
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline \multicolumn{10}{|l|}{****}

\hline \multirow[t]{3}{*}{Lighting $\operatorname{Rod} 5 / 8^{\prime \prime} \times 7$ '} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{97.50} \& No Ice \& 0.53 \& 0.53 \& 30.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.24 \& 1.24 \& 35.42

\hline \& \& \& 5.00 \& \& \& 1 " Ice \& 1.97 \& 1.97 \& 45.35

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{| RDIDC-9181-PF-48 |
| :--- |
| (Dish Wireless) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 0.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 0.93 \& 1.07 \& 21.85

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.06 \& 1.20 \& 38.15

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.19 \& 1.35 \& 57.11

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{TA08025-B604 (Dish Wireless)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 1.96 \& 1.03 \& 63.93

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.14 \& 1.17 \& 80.68

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.32 \& 1.31 \& 100.13

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{TA08025-B604 (Dish Wireless)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 1.96 \& 1.03 \& 63.93

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.14 \& 1.17 \& 80.68

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.32 \& 1.31 \& 100.13

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{TA08025-B604 (Dish Wireless)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 1.96 \& 1.03 \& 63.93

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.14 \& 1.17 \& 80.68

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.32 \& 1.31 \& 100.13

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{MX08FRO665-20_V0F (Dish Wireless)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 12.49 \& 5.87 \& 54.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.99 \& 6.32 \& 127.79

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 13.49 \& 6.79 \& 208.26

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{MX08FRO665-20 V0F (Dish Wireless)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 12.49 \& 5.87 \& 54.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.99 \& 6.32 \& 127.79

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 13.49 \& 6.79 \& 208.26

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{| MX08FRO665-20_V0F |
| :--- |
| (Dish Wireless) |} \& \multirow[t]{2}{*}{C} \& \multirow[t]{2}{*}{From Leg} \& 3.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{90.00} \& No Ice \& 12.49 \& 5.87 \& 54.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.99 \& 6.32 \& 127.79

\hline
\end{tabular}

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & \\ & 5 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 19:35:07 02/23/21 } \end{array}$
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

tnxTOWer	Job	Page	
NC			
Phone: engineering@sgstowers.com FAX:	Project	SGS\# 2101548	6 of 24
	Client	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

$l b$

\hline $$
\begin{gathered}
* * * \\
\text { TA08025-B604 } \\
\text { (Dish Wireless) }
\end{gathered}
$$ \& C \& From Leg \& \[

$$
\begin{aligned}
& 2.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.96 \\
& 2.14 \\
& 2.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.03 \\
& 1.17 \\
& 1.31
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
63.93 \\
80.68 \\
100.13
\end{gathered}
$$
\]

\hline $$
\begin{aligned}
& \text { MX08FRO665-20_V0F } \\
& \text { (Dish Wireless) }
\end{aligned}
$$ \& A \& From Leg \& \[

$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[

$$
\begin{aligned}
& 12.49 \\
& 12.99 \\
& 13.49
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.87 \\
& 6.32 \\
& 6.79
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
54.00 \\
127.79 \\
208.26
\end{gathered}
$$
\]

\hline MX08FRO665-20_V0F (Dish Wireless) \& B \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 12.49 \\
& 12.99 \\
& 13.49
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.87 \\
& 6.32 \\
& 6.79
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
54.00 \\
127.79 \\
208.26
\end{gathered}
$$
\]

\hline $$
\begin{gathered}
* * * \\
\text { MX08FRO665-20_V0F } \\
\text { (Dish Wireless) }
\end{gathered}
$$ \& C \& From Leg \& \[

$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 12.49 \\
& 12.99 \\
& 13.49
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.87 \\
& 6.32 \\
& 6.79
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
54.00 \\
127.79 \\
208.26
\end{gathered}
$$
\]

\hline $$
\begin{gathered}
* * * \\
\text { TA08025-B605 } \\
\text { (Dish Wireless) }
\end{gathered}
$$ \& A \& From Leg \& \[

$$
\begin{aligned}
& 2.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.96 \\
& 2.14 \\
& 2.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.19 \\
& 1.33 \\
& 1.48
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
74.95 \\
92.92 \\
113.67
\end{gathered}
$$
\]

\hline | TA08025-B605 |
| :--- |
| (Dish Wireless) | \& B \& From Leg \& \[

$$
\begin{aligned}
& 2.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.96 \\
& 2.14 \\
& 2.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.19 \\
& 1.33 \\
& 1.48
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
74.95 \\
92.92 \\
113.67
\end{gathered}
$$
\]

\hline TA08025-B605 (Dish Wireless) \& C \& From Leg \& $$
\begin{aligned}
& 2.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.96 \\
& 2.14 \\
& 2.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.19 \\
& 1.33 \\
& 1.48
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
74.95 \\
92.92 \\
113.67
\end{gathered}
$$
\]

\hline | ****Dish Reserved Loading*** |
| :--- |
| Dish $1 / 3$ of Remainder Reserved (Dish Wireless) | \& A \& From Leg \& \[

$$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[

$$
\begin{aligned}
& 6.40 \\
& 7.00 \\
& 7.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.20 \\
& 3.80 \\
& 4.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 140.00 \\
& 280.00 \\
& 420.00
\end{aligned}
$$
\]

\hline Dish $1 / 3$ of Remainder Reserved (Dish Wireless) \& B \& From Leg \& \[
$$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 6.40 \\
& 7.00 \\
& 7.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.20 \\
& 3.80 \\
& 4.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 140.00 \\
& 280.00 \\
& 420.00
\end{aligned}
$$
\]

\hline Dish 1/3 of Remainder Reserved (Dish Wireless) \& C \& From Leg \& $$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00 \\
& \hline
\end{aligned}
$$ \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 6.40 \\
& 7.00 \\
& 7.60 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.20 \\
& 3.80 \\
& 4.40 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 140.00 \\
& 280.00 \\
& 420.00 \\
& \hline
\end{aligned}
$$
\]

\hline
\end{tabular}

Tower Pressures - No Ice

$$
G_{H}=1.100
$$

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & 7 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
\(f t\)
\end{tabular} \& \(z\)
\(f t\) \& \(K_{Z}\) \& \[
q_{z}
\]
\[
p s f
\] \& \(A_{G}\)

$f t^{2}$ \& F
a
c
e \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& \[
$$
\begin{gathered}
L e g \\
\%
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| In |
| Face |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline \multirow[t]{3}{*}{L1 97.50-50.79} \& \multirow[t]{3}{*}{73.13} \& \multirow[t]{3}{*}{1.185} \& \multirow[t]{3}{*}{34} \& \multirow[t]{3}{*}{77.061} \& A \& 0.000 \& 77.061 \& \multirow[t]{3}{*}{77.061} \& 100.00 \& 4.671 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 77.061 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 77.061 \& \& 100.00 \& 6.274 \& 0.000

\hline \multirow[t]{3}{*}{L2 50.79-1.50} \& \multirow[t]{3}{*}{26.20} \& \multirow[t]{3}{*}{0.955} \& \multirow[t]{3}{*}{27} \& \multirow[t]{3}{*}{109.676} \& A \& 0.000 \& 109.676 \& \multirow[t]{3}{*}{109.676} \& 100.00 \& 4.929 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 109.676 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 109.676 \& \& 100.00 \& 7.646 \& 0.000

\hline
\end{tabular}

Tower Pressure - With Ice

$G_{H}=1.100$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation
\(\qquad\) \\
\(f t\)
\end{tabular} \& \(z\)
\(f t\) \& \(K_{Z}\) \& \[
q_{z}
\]
\[
p s f
\] \& \(t_{Z}\)
in \& \(A_{G}\)

$f t^{2}$ \& F
a
c
e \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& \[
$$
\begin{gathered}
\text { Leg } \\
\%
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { In } \\
\text { Face } \\
{f t^{2}}^{2}
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline \multirow[t]{3}{*}{L1 97.50-50.79} \& \multirow[t]{3}{*}{73.13} \& \multirow[t]{3}{*}{1.185} \& \multirow[t]{3}{*}{4} \& \multirow[t]{3}{*}{0.9204} \& \multirow[t]{3}{*}{84.226} \& A \& 0.000 \& 84.226 \& \multirow[t]{3}{*}{84.226} \& 100.00 \& 21.868 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 84.226 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 0.000 \& 84.226 \& \& 100.00 \& 13.491 \& 0.000

\hline \multirow[t]{3}{*}{L2 50.79-1.50} \& \multirow[t]{3}{*}{26.20} \& \multirow[t]{3}{*}{0.955} \& \multirow[t]{3}{*}{3} \& \multirow[t]{3}{*}{0.8306} \& \multirow[t]{3}{*}{117.237} \& A \& 0.000 \& 117.237 \& \multirow[t]{3}{*}{117.237} \& 100.00 \& 23.076 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 117.237 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 0.000 \& 117.237 \& \& 100.00 \& 16.444 \& 0.000

\hline
\end{tabular}

Tower Pressure - Service

$$
G_{H}=1.100
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
ft
\end{tabular} \& \(z\)
\(f t\) \& \(K_{Z}\) \& \[
q_{z}
\]
\[
p s f
\] \& \(A_{G}\)

$f t^{2}$ \& | F |
| :--- |
| a |
| c |
| e | \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& Leg \% \& | $C_{A} A_{A}$ |
| :--- |
| In |
| Face |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline \multirow[t]{3}{*}{L1 97.50-50.79} \& \multirow[t]{3}{*}{73.13} \& \multirow[t]{3}{*}{1.185} \& \multirow[t]{3}{*}{9} \& \multirow[t]{3}{*}{77.061} \& A \& 0.000 \& 77.061 \& \multirow[t]{3}{*}{77.061} \& 100.00 \& 4.671 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 77.061 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 77.061 \& \& 100.00 \& 6.274 \& 0.000

\hline \multirow[t]{3}{*}{L2 50.79-1.50} \& \multirow[t]{3}{*}{26.20} \& \multirow[t]{3}{*}{0.955} \& \multirow[t]{3}{*}{7} \& \multirow[t]{3}{*}{109.676} \& A \& 0.000 \& 109.676 \& \multirow[t]{3}{*}{109.676} \& 100.00 \& 4.929 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 109.676 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 109.676 \& \& 100.00 \& 7.646 \& 0.000

\hline
\end{tabular}

Tower Forces - No Ice - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
\(f t\)
\(\qquad\)
\end{tabular} \& Add Weight
\[
l b
\] \& Self Weight
\[
l b
\] \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline L1 \& \multirow[t]{3}{*}{220.72} \& \multirow[t]{3}{*}{1920.63} \& A \& 1 \& 0.73 \& \multirow[t]{3}{*}{34} \& 1 \& 1 \& 77.061 \& \multirow[t]{3}{*}{2127.44} \& \multirow[t]{3}{*}{45.55} \& \multirow[t]{3}{*}{C}

\hline 97.50-50.79 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline \multirow[t]{3}{*}{L2 50.79-1.50} \& \multirow[t]{3}{*}{237.28} \& \multirow[t]{3}{*}{3859.93} \& A \& 1 \& 0.73 \& \multirow[t]{3}{*}{27} \& 1 \& 1 \& 109.676 \& \multirow[t]{3}{*}{2397.60} \& \multirow[t]{3}{*}{48.64} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline
\end{tabular}

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & 8 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	$\begin{aligned} & \hline \text { Date } \\ & \text { 19:35:07 02/23/21 } \end{aligned}$
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section Elevation $f t$	Add Weight lb	Self Weight lb	F a c e	e	C_{F}	q_{z} $p s f$	D_{F}	D_{R}	$\overline{A_{E}}$ $f t^{2}$	F lb	w $p l f$	Ctrl. Face
Sum Weight:	457.99	5780.55						OTM	$\begin{array}{r} 211597.60 \\ 1 \mathrm{~b}-\mathrm{ft} \end{array}$	4525.04		

Tower Forces - No Ice - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& Add Weight
\(\qquad\) lb \& Self Weight
\(\qquad\) lb \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\[
q_{z}
\] \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \[
\overline{A_{E}}
\]
\[
f t^{2}
\] \& \(F\)

$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& 220.72 \& 1920.63 \& A \& 1 \& 0.73 \& 34 \& 1 \& 1 \& 77.061 \& 2127.44 \& 45.55 \& C

\hline 97.50-50.79 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline L2 50.79-1.50 \& 237.28 \& 3859.93 \& A \& 1 \& 0.73 \& 27 \& 1 \& 1 \& 109.676 \& 2397.60 \& 48.64 \& C

\hline \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline Sum Weight: \& 457.99 \& 5780.55 \& \& \& \& \& \& OTM \& $$
211597.60
$$

$$
\mathrm{lb}-\mathrm{ft}
$$ \& 4525.04 \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
\(f t\)
\end{tabular} \& Add Weight
\[
l b
\] \& \begin{tabular}{l}
Self Weight \\
lb
\end{tabular} \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
psf
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \[
\overline{A_{E}}
\]
\[
f t^{2}
\] \& \(F\)

$l b$ \& w
$p l f$ \& Ctrl. Face

\hline L1 \& 220.72 \& 1920.63 \& A \& 1 \& 0.73 \& 34 \& 1 \& 1 \& 77.061 \& 2127.44 \& 45.55 \& C

\hline 97.50-50.79 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline L2 50.79-1.50 \& 237.28 \& 3859.93 \& A \& 1 \& 0.73 \& 27 \& 1 \& 1 \& 109.676 \& 2397.60 \& 48.64 \& C

\hline \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline Sum Weight: \& 457.99 \& 5780.55 \& \& \& \& \& \& OTM \& 211597.60 \& 4525.04 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-ft \& \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& Add Weight
\(\qquad\) \(l b\) \& Self Weight
\(\qquad\) \(l b\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\[
q_{z}
\] \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& \multirow[t]{3}{*}{481.05} \& \multirow[t]{3}{*}{3005.58} \& A \& 1 \& 1.2 \& \multirow[t]{3}{*}{4} \& 1 \& 1 \& 84.226 \& \multirow[t]{2}{*}{478.95} \& \multirow[t]{2}{*}{10.25} \& \multirow[t]{2}{*}{C}

\hline 97.50-50.79 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 84.226 \& \& \&

\hline \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 84.226 \& \& \&

\hline L2 50.79-1.50 \& 530.17 \& 5232.67 \& A \& 1 \& 1.2 \& \multirow[t]{2}{*}{3} \& 1 \& 1 \& 116.500 \& \multirow[t]{2}{*}{524.58} \& \multirow[t]{2}{*}{10.64} \& \multirow[t]{2}{*}{C}

\hline \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 116.500 \& \& \&

\hline
\end{tabular}

tnxTower	Job	SGS\# 2101548	Page
			9 of 24
SGS TowersChapell Hill,NCPhone: engineering@sgstowers.comFAX:	Project	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section Elevation ft	Add Weight $l b$	Self Weight $l b$	$\begin{aligned} & \hline F \\ & a \\ & c \\ & e \end{aligned}$	e	C_{F}	q_{z} $p s f$	D_{F}	D_{R}	A_{E} $f t^{2}$	F lb	w $p l f$	Ctrl. Face
Sum Weight:	1011.22	8238.25	C	1	1.2		1	$\begin{array}{r} 1 \\ \text { OTM } \end{array}$	$\begin{array}{r} 116.500 \\ 47261.79 \\ \mathrm{lb}-\mathrm{ft} \end{array}$	1003.53		

Tower Forces - With Ice - Wind 60 To Face

Section Elevation ft	Add Weight lb	Self Weight lb	F a c e	e	C_{F}	q_{z} psf	D_{F}	D_{R}	$\begin{gathered} A_{E} \\ f t^{2} \end{gathered}$	F $l b$	w plf	Ctrl. Face
L1	481.05	3005.58	A	1	1.2	4	1	1	84.226	478.95	10.25	C
97.50-50.79			B	1	1.2		1	1	84.226			
			C	1	1.2		1	1	84.226			
L2 50.79-1.50	530.17	5232.67	A	1	1.2	3	1	1	116.500	524.58	10.64	C
			B	1	1.2		1	1	116.500			
			C	1	1.2		1	1	116.500			
Sum Weight:	1011.22	8238.25						OTM	47261.79	1003.53		
									lb-ft			

Tower Forces - With Ice - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section \\
Elevation \\
ft
\end{tabular} \& \begin{tabular}{l}
Add \\
Weight \\
lb
\end{tabular} \& Self Weight lb \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

plf \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& 481.05 \& 3005.58 \& A \& 1 \& 1.2 \& 4 \& 1 \& 1 \& 84.226 \& 478.95 \& 10.25 \& C

\hline 97.50-50.79 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 84.226 \& \& \&

\hline \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 84.226 \& \& \&

\hline L2 50.79-1.50 \& 530.17 \& 5232.67 \& A \& 1 \& 1.2 \& 3 \& 1 \& 1 \& 116.500 \& 524.58 \& 10.64 \& C

\hline \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 116.500 \& \& \&

\hline \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 116.500 \& \& \&

\hline Sum Weight: \& 1011.22 \& 8238.25 \& \& \& \& \& \& OTM \& 47261.79 \& 1003.53 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-ft \& \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind Normal To Face

Section Elevation $f t$	Add Weight $l b$	Self Weight $l b$	$\begin{aligned} & F \\ & a \\ & c \\ & e \\ & \hline \end{aligned}$	e	C_{F}	q_{z} $p s f$	D_{F}	D_{R}	$\begin{gathered} A_{E} \\ \\ f t^{2} \\ \hline \end{gathered}$	F $l b$	w $p l f$	Ctrl. Face
L1	220.72	1920.63	A	1	0.73	9	1	1	77.061	564.90	12.09	C
97.50-50.79			B	1	0.73		1	1	77.061			
			C	1	0.73		1	1	77.061			
L2 50.79-1.50	237.28	3859.93	A	1	0.73	7	1	1	109.676	636.64	12.92	C

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } 10 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
$N C$ Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section Elevation \qquad	Add Weight \qquad $l b$	Self Weight \qquad $l b$	$\begin{aligned} & \hline F \\ & a \\ & c \\ & e \end{aligned}$	e	C_{F}	q_{z} $p s f$	D_{F}	D_{R}	A_{E} $f t^{2}$	F $l b$	w $p l f$	Ctrl. Face
Sum Weight:	457.99	5780.55	B	1	0.73 0.73		1	1 1 OTM	$\begin{array}{r} 109.676 \\ 109.676 \\ 56185.99 \\ \mathrm{lb}-\mathrm{ft} \end{array}$	1201.54		

Tower Forces - Service - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\[
f t
\] \& Add Weight lb \& \begin{tabular}{l}
Self Weight \\
lb
\end{tabular} \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F

$l b$ \& w
$p l f$ \& Ctrl. Face

\hline L1 \& 220.72 \& 1920.63 \& A \& 1 \& 0.73 \& 9 \& 1 \& 1 \& 77.061 \& 564.90 \& 12.09 \& C

\hline 97.50-50.79 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline L2 50.79-1.50 \& 237.28 \& 3859.93 \& A \& 1 \& 0.73 \& 7 \& 1 \& 1 \& 109.676 \& 636.64 \& 12.92 \& C

\hline \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline Sum Weight: \& 457.99 \& 5780.55 \& \& \& \& \& \& OTM \& 56185.99 \& 1201.54 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-ft \& \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind 90 To Face

Section Elevation \qquad	Add Weight $l b$	Self Weight \qquad $l b$	F a c e	e	C_{F}	q_{z} $p s f$	D_{F}	D_{R}	$\overline{A_{E}}$ $f t^{2}$	F $l b$	w $p l f$	Ctrl. Face
L1	220.72	1920.63	A	1	0.73	9	1	1	77.061	564.90	12.09	C
97.50-50.79			B	1	0.73		1	1	77.061			
			C	1	0.73		1	1	77.061			
L2 50.79-1.50	237.28	3859.93	A	1	0.73	7	1	1	109.676	636.64	12.92	C
			B	1	0.73		1	1	109.676			
			C	1	0.73		1	1	109.676			
Sum Weight:	457.99	5780.55						OTM	56185.99	1201.54		
									lb-ft			

Force Totals

| $\begin{array}{c}\text { Load } \\ \text { Case }\end{array}$ | $\begin{array}{c}\text { Vertical } \\ \text { Forces }\end{array}$ | $\begin{array}{c}\text { Sum of } \\ \text { Forces } \\ X\end{array}$ | $\begin{array}{c}\text { Sum of } \\ \text { Forces } \\ Z\end{array}$ | $\begin{array}{c}\text { Sum of } \\ \text { Overturning } \\ \text { Moments } M_{x} \\ l b-f t\end{array}$ | $\begin{array}{c}\text { Sum of } \\ \text { Overturning } \\ \text { Moments, } M_{z} \\ l b-f t\end{array}$ | $\begin{array}{c}\text { Sum of Torques } \\ \\ \end{array} \quad l b$ |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | $\left.\begin{array}{lr}l b\end{array}\right]$

Load Case	Vertical Forces lb	Sum of Forces X $l b$	Sum of Forces Z $l b$	Sum of Overturning Moments, M_{x} $l b-f t$	Sum of Overturning Moments, M_{z} lb-ft	Sum of Torques $l b-f t$
Total Weight	13931.84			-37.47	59.77	
Wind 0 deg - No Ice		0.00	-12394.63	-939487.16	59.77	0.00
Wind 30 deg - No Ice		6199.43	-10734.06	-813624.77	-469852.15	-51.28
Wind 60 deg - No Ice		10737.72	-6197.31	-469762.32	-813851.56	-88.82
Wind 90 deg - No Ice		12398.85	0.00	-37.47	-939764.08	-102.56
Wind 120 deg - No Ice		10737.72	6197.31	469687.37	-813851.56	-88.82
Wind 150 deg - No Ice		6199.43	10734.06	813549.82	-469852.15	-51.28
Wind 180 deg - No Ice		0.00	12394.63	939412.21	59.77	0.00
Wind 210 deg - No Ice		-6199.43	10734.06	813549.82	469971.69	51.28
Wind 240 deg - No Ice		-10737.72	6197.31	469687.37	813971.09	88.82
Wind 270 deg - No Ice		-12398.85	0.00	-37.47	939883.61	102.56
Wind 300 deg - No Ice		-10737.72	-6197.31	-469762.32	813971.09	88.82
Wind 330 deg - No Ice		-6199.43	-10734.06	-813624.77	469971.69	51.28
Member Ice	2457.69					
Total Weight Ice	30464.17			-6.70	320.17	
Wind 0 deg - Ice		0.00	-2253.92	-163408.26	320.17	0.00
Wind 30 deg - Ice		1127.27	-1951.95	-141516.60	-81407.73	-19.67
Wind 60 deg - Ice		1952.49	-1126.96	-81707.48	-141236.70	-34.07
Wind 90 deg - Ice		2254.54	0.00	-6.70	-163135.63	-39.35
Wind 120 deg - Ice		1952.49	1126.96	81694.09	-141236.70	-34.07
Wind 150 deg - Ice		1127.27	1951.95	141503.21	-81407.73	-19.67
Wind 180 deg - Ice		0.00	2253.92	163394.87	320.17	0.00
Wind 210 deg - Ice		-1127.27	1951.95	141503.21	82048.06	19.67
Wind 240 deg - Ice		-1952.49	1126.96	81694.09	141877.04	34.07
Wind 270 deg - Ice		-2254.54	0.00	-6.70	163775.96	39.35
Wind 300 deg - Ice		-1952.49	-1126.96	-81707.48	141877.04	34.07
Wind 330 deg - Ice		-1127.27	-1951.95	-141516.60	82048.06	19.67
Total Weight	13931.84			-37.47	59.77	
Wind 0 deg - Service		0.00	-3291.17	-249579.82	0.00	0.00
Wind 30 deg - Service		1646.15	-2850.24	-216159.29	-124776.79	-13.62
Wind 60 deg - Service		2851.21	-1645.59	-124852.71	-216119.73	-23.58
Wind 90 deg - Service		3292.30	0.00	-125.60	-249553.57	-27.23
Wind 120 deg - Service		2851.21	1645.59	124601.51	-216119.73	-23.58
Wind 150 deg - Service		1646.15	2850.24	215908.09	-124776.79	-13.62
Wind 180 deg - Service		0.00	3291.17	249328.62	0.00	0.00
Wind 210 deg - Service		-1646.15	2850.24	215908.09	124776.79	13.62
Wind 240 deg - Service		-2851.21	1645.59	124601.51	216119.73	23.58
Wind 270 deg - Service		-3292.30	0.00	-125.60	249553.57	27.23
Wind 300 deg - Service		-2851.21	-1645.59	-124852.71	216119.73	23.58
Wind 330 deg - Service		-1646.15	-2850.24	-216159.29	124776.79	13.62

Load Combinations

Comb. No.		Description
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 60 deg - No Ice	
7	0.9 Dead+1.0 Wind 60 deg - No Ice	
8	1.2 Dead+1.0 Wind 90 deg - No Ice	
9	0.9 Dead+1.0 Wind 90 deg - No Ice	
10	1.2 Dead+1.0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	

Comb. No.	Description
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0$ Ice+1.0 Temp
29	1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$ Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind $120 \mathrm{deg}+1.0$ Ice+1.0 Temp
32	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp
33	1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0$ Ice+1.0 Temp
34	1.2 Dead+1.0 Wind $210 \mathrm{deg}+1.0$ Ice+1.0 Temp
35	1.2 Dead+1.0 Wind $240 \mathrm{deg}+1.0$ Ice+1.0 Temp
36	1.2 Dead+1.0 Wind $270 \mathrm{deg}+1.0$ Ice+1.0 Temp
37	1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0$ Ice+1.0 Temp
38	1.2 Dead+1.0 Wind $330 \mathrm{deg}+1.0$ Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial $l b$	Major Axis Moment $l b-f t$	Minor Axis Moment $l b-f t$
L1	97.5-50.79	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-26353.11	133.40	163.46
			Max. Mx	20	-10483.11	409666.71	122.53
			Max. My	2	-10483.94	31.98	409591.46
			Max. Vy	20	-10994.49	409666.71	122.53
			Max. Vx	2	-10989.92	31.98	409591.46
			Max. Torque	20			-122.49
L2	50.79-1.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-33345.79	337.99	23.26
			Max. Mx	20	-16686.66	1031731.55	59.90
			Max. My	2	-16686.68	78.95	1031308.50
			Max. Vy	20	-12441.28	1031731.55	59.90
			Max. Vx	2	-12437.04	78.95	1031308.50
			Max. Torque	20			-120.95

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & 13 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 19:35:07 02/23/21 } \end{array}$
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Section No. \& Elevation \(f t\) \& Component Type \& Condition \& \begin{tabular}{l}
Gov. \\
Load \\
Comb.
\end{tabular} \& Axial

$l b$ \& Major Axis Moment $l b-f t$ \& Minor Axis Moment $l b-f t$

\hline
\end{tabular}

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical $l b$	$\begin{gathered} \text { Horizontal, } X \\ l b \end{gathered}$	Horizontal, Z $l b$
Pole	Max. Vert	36	33345.79	2254.74	0.00
	Max. H_{x}	20	16718.21	12398.86	0.00
	Max. H_{z}	2	16718.21	0.00	12394.63
	Max. M_{x}	2	1031308.50	0.00	12394.63
	Max. M_{z}	8	1031575.43	-12398.86	0.00
	Max. Torsion	8	119.76	-12398.86	0.00
	Min. Vert	25	12538.65	6199.43	10734.06
	Min. H_{x}	8	16718.21	-12398.86	0.00
	Min. H_{z}	14	16718.21	0.00	-12394.63
	Min. M_{x}	14	-1031183.63	0.00	-12394.63
	Min. M_{z}	20	-1031731.55	12398.86	0.00
	Min. Torsion	20	-119.76	12398.86	0.00

Tower Mast Reaction Summary

Load Combination	Vertical lb	Shear ${ }_{x}$ $l b$	Shear $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead Only	13931.84	0.00	0.00	-37.47	59.77	0.00
1.2 Dead+1.0 Wind 0 deg - No	16718.21	-0.00	-12394.63	-1031308.50	78.95	-0.01
Ice						
0.9 Dead+1.0 Wind 0 deg - No	12538.65	-0.00	-12394.63	-1005100.56	57.66	-0.01
Ice						
1.2 Dead+1.0 Wind 30 deg - No	16718.20	6199.43	-10734.06	-893158.95	-515758.14	-59.90
Ice						
0.9 Dead+1.0 Wind 30 deg - No	12538.65	6199.43	-10734.06	-870449.61	-502673.60	-57.10
Ice						
1.2 Dead+1.0 Wind 60 deg - No	16718.20	10737.72	-6197.31	-515689.39	-893374.49	-103.77
Ice						
0.9 Dead+1.0 Wind 60 deg - No	12538.65	10737.72	-6197.31	-502570.48	-870696.19	-98.99
Ice						
1.2 Dead+1.0 Wind 90 deg - No	16718.21	12398.86	-0.00	-59.81	-1031575.43	-119.76
Ice						
0.9 Dead+1.0 Wind 90 deg - No	12538.65	12398.85	-0.00	-41.08	-1005397.75	-114.21
Ice						
1.2 Dead+1.0 Wind 120 deg -	16718.20	10737.72	6197.31	515568.48	-893372.20	-103.64
No Ice						
0.9 Dead+1.0 Wind 120 deg -	12538.65	10737.72	6197.31	502487.43	-870694.63	-98.82
No Ice						
1.2 Dead+1.0 Wind 150 deg -	16718.20	6199.43	10734.06	893035.39	-515755.85	-59.85
No Ice						
0.9 Dead+1.0 Wind 150 deg -	12538.65	6199.43	10734.06	870364.76	-502672.04	-57.10
No Ice						
1.2 Dead+1.0 Wind 180 deg -	16718.21	-0.00	12394.63	1031183.63	78.95	0.01
No Ice						
0.9 Dead+1.0 Wind 180 deg -	12538.65	-0.00	12394.63	1005014.80	57.66	0.01
No Ice						

Load Combination	Vertical $l b$	Shear $_{x}$ $l b$	Shear ${ }_{z}$ lb	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
1.2 Dead+1.0 Wind 210 deg -	16718.20	-6199.43	10734.06	893034.63	515913.30	59.87
No Ice						
0.9 Dead+1.0 Wind 210 deg -	12538.65	-6199.43	10734.06	870364.25	502787.07	57.12
No Ice						
1.2 Dead+1.0 Wind 240 deg -	16718.20	-10737.72	6197.31	515567.72	893528.76	103.65
No Ice						
0.9 Dead+1.0 Wind 240 deg -	12538.65	-10737.72	6197.31	502486.92	870809.07	98.83
No Ice						
1.2 Dead+1.0 Wind 270 deg -	16718.21	-12398.86	-0.00	-59.81	1031731.55	119.76
No Ice						
0.9 Dead+1.0 Wind 270 deg -	12538.65	-12398.85	-0.00	-41.08	1005511.90	114.21
No Ice						
1.2 Dead+1.0 Wind 300 deg -	16718.20	-10737.72	-6197.31	-515688.62	893531.05	103.76
No Ice						
0.9 Dead+1.0 Wind 300 deg -	12538.65	-10737.72	-6197.31	-502569.97	870810.63	98.99
No Ice						
1.2 Dead+1.0 Wind 330 deg -	16718.20	-6199.43	-10734.06	-893158.18	515915.59	59.88
No Ice						
0.9 Dead+1.0 Wind 330 deg -	12538.65	-6199.43	-10734.06	-870449.10	502788.63	57.09
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	33345.79	-0.00	-0.00	-23.26	337.99	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	33345.79	-0.00	-2254.12	-210555.67	432.90	0.01
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	33345.79	1127.37	-1952.13	-182358.57	-104836.37	-22.81
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	33345.79	1952.66	-1127.06	-105322.21	-181898.19	-39.54
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	33345.79	2254.74	-0.00	-88.47	-210104.19	-45.64
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	33345.79	1952.66	1127.06	105144.73	-181897.26	-39.51
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	33345.79	1127.37	1952.13	182180.03	-104835.44	-22.82
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	33345.79	-0.00	2254.12	210376.60	432.90	0.02
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	33345.79	-1127.37	1952.13	182179.81	105701.10	22.85
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	33345.79	-1952.66	1127.06	105144.52	182762.66	39.54
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	33345.79	-2254.74	-0.00	-88.47	210969.46	45.67
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	33345.79	-1952.66	-1127.06	-105321.98	182763.59	39.56
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	33345.79	-1127.37	-1952.13	-182358.34	105702.03	22.83
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	13931.84	-0.00	-3291.17	-270479.09	64.95	-0.00
Dead+Wind 30 deg - Service	13931.84	1646.15	-2850.24	-234248.56	-135203.26	-15.92
Dead+Wind 60 deg - Service	13931.84	2851.21	-1645.59	-135264.89	-234226.36	-27.58
Dead+Wind 90 deg - Service	13931.84	3292.30	-0.00	-50.72	-270471.24	-31.84
Dead+Wind 120 deg - Service	13931.84	2851.21	1645.59	135163.37	-234226.23	-27.56
Dead+Wind 150 deg - Service	13931.84	1646.15	2850.24	234146.89	-135203.13	-15.92
Dead+Wind 180 deg - Service	13931.84	-0.00	3291.17	270377.34	64.95	0.00
Dead+Wind 210 deg - Service	13931.84	-1646.15	2850.24	234146.85	135333.01	15.92
Dead+Wind 240 deg - Service	13931.84	-2851.21	1645.59	135163.33	234356.06	27.57
Dead+Wind 270 deg - Service	13931.84	-3292.30	-0.00	-50.72	270601.04	31.84
Dead+Wind 300 deg - Service	13931.84	-2851.21	-1645.59	-135264.85	234356.19	27.58
Dead+Wind 330 deg - Service	13931.84	-1646.15	-2850.24	-234248.52	135333.14	15.92

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	PZ	PX	PY	$P Z$	
Comb.	$l b$						
1	0.00	-13931.84	0.00	0.00	13931.84	0.00	0.000\%
2	0.00	-16718.20	-12394.63	0.00	16718.21	12394.63	0.000\%
3	0.00	-12538.65	-12394.63	0.00	12538.65	12394.63	0.000\%
4	6199.43	-16718.20	-10734.06	-6199.43	16718.20	10734.06	0.000\%
5	6199.43	-12538.65	-10734.06	-6199.43	12538.65	10734.06	0.000\%
6	10737.72	-16718.20	-6197.31	-10737.72	16718.20	6197.31	0.000\%
7	10737.72	-12538.65	-6197.31	-10737.72	12538.65	6197.31	0.000\%
8	12398.85	-16718.20	0.00	-12398.86	16718.21	0.00	0.000\%
9	12398.85	-12538.65	0.00	-12398.85	12538.65	0.00	0.000\%
10	10737.72	-16718.20	6197.31	-10737.72	16718.20	-6197.31	0.000\%
11	10737.72	-12538.65	6197.31	-10737.72	12538.65	-6197.31	0.000\%
12	6199.43	-16718.20	10734.06	-6199.43	16718.20	-10734.06	0.000\%
13	6199.43	-12538.65	10734.06	-6199.43	12538.65	-10734.06	0.000\%
14	0.00	-16718.20	12394.63	0.00	16718.21	-12394.63	0.000\%
15	0.00	-12538.65	12394.63	0.00	12538.65	-12394.63	0.000\%
16	-6199.43	-16718.20	10734.06	6199.43	16718.20	-10734.06	0.000\%
17	-6199.43	-12538.65	10734.06	6199.43	12538.65	-10734.06	0.000\%
18	-10737.72	-16718.20	6197.31	10737.72	16718.20	-6197.31	0.000\%
19	-10737.72	-12538.65	6197.31	10737.72	12538.65	-6197.31	0.000\%
20	-12398.85	-16718.20	0.00	12398.86	16718.21	0.00	0.000\%
21	-12398.85	-12538.65	0.00	12398.85	12538.65	0.00	0.000\%
22	-10737.72	-16718.20	-6197.31	10737.72	16718.20	6197.31	0.000\%
23	-10737.72	-12538.65	-6197.31	10737.72	12538.65	6197.31	0.000\%
24	-6199.43	-16718.20	-10734.06	6199.43	16718.20	10734.06	0.000\%
25	-6199.43	-12538.65	-10734.06	6199.43	12538.65	10734.06	0.000\%
26	0.00	-33345.79	0.00	0.00	33345.79	0.00	0.000\%
27	0.00	-33345.79	-2253.92	0.00	33345.79	2254.12	0.001\%
28	1127.27	-33345.79	-1951.95	-1127.37	33345.79	1952.13	0.001\%
29	1952.49	-33345.79	-1126.96	-1952.66	33345.79	1127.06	0.001\%
30	2254.54	-33345.79	0.00	-2254.74	33345.79	0.00	0.001\%
31	1952.49	-33345.79	1126.96	-1952.66	33345.79	-1127.06	0.001\%
32	1127.27	-33345.79	1951.95	-1127.37	33345.79	-1952.13	0.001\%
33	0.00	-33345.79	2253.92	0.00	33345.79	-2254.12	0.001\%
34	-1127.27	-33345.79	1951.95	1127.37	33345.79	-1952.13	0.001\%
35	-1952.49	-33345.79	1126.96	1952.66	33345.79	-1127.06	0.001\%
36	-2254.54	-33345.79	0.00	2254.74	33345.79	0.00	0.001\%
37	-1952.49	-33345.79	-1126.96	1952.66	33345.79	1127.06	0.001\%
38	-1127.27	-33345.79	-1951.95	1127.37	33345.79	1952.13	0.001\%
39	0.00	-13931.84	-3291.17	0.00	13931.84	3291.17	0.000\%
40	1646.15	-13931.84	-2850.24	-1646.15	13931.84	2850.24	0.000\%
41	2851.21	-13931.84	-1645.59	-2851.21	13931.84	1645.59	0.000\%
42	3292.30	-13931.84	0.00	-3292.30	13931.84	0.00	0.000\%
43	2851.21	-13931.84	1645.59	-2851.21	13931.84	-1645.59	0.000\%
44	1646.15	-13931.84	2850.24	-1646.15	13931.84	-2850.24	0.000\%
45	0.00	-13931.84	3291.17	0.00	13931.84	-3291.17	0.000\%
46	-1646.15	-13931.84	2850.24	1646.15	13931.84	-2850.24	0.000\%
47	-2851.21	-13931.84	1645.59	2851.21	13931.84	-1645.59	0.000\%
48	-3292.30	-13931.84	0.00	3292.30	13931.84	0.00	0.000\%
49	-2851.21	-13931.84	-1645.59	2851.21	13931.84	1645.59	0.000\%
50	-1646.15	-13931.84	-2850.24	1646.15	13931.84	2850.24	0.000\%

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00024884
3	Yes	5	0.00000001	0.00002553
4	Yes	7	0.00000001	0.00018304
5	Yes	6	0.00000001	0.00051416
6	Yes	7	0.00000001	0.00018415
7	Yes	6	0.00000001	0.00051743
8	Yes	5	0.00000001	0.00027112
9	Yes	5	0.00000001	0.00005397
10	Yes	7	0.00000001	0.00018261
11	Yes	6	0.00000001	0.00051301
12	Yes	7	0.00000001	0.00018370
13	Yes	6	0.00000001	0.00051623
14	Yes	5	0.00000001	0.00024864
15	Yes	5	0.00000001	0.00002551
16	Yes	7	0.00000001	0.00018373
17	Yes	6	0.00000001	0.00051630
18	Yes	7	0.00000001	0.00018264
19	Yes	6	0.00000001	0.00051307
20	Yes	5	0.00000001	0.00027115
21	Yes	5	0.00000001	0.00005397
22	Yes	7	0.00000001	0.00018418
23	Yes	6	0.00000001	0.00051749
24	Yes	7	0.00000001	0.00018307
25	Yes	6	0.00000001	0.00051423
26	Yes	4	0.00000001	0.00000001
27	Yes	6	0.00047952	0.00029723
28	Yes	6	0.00047793	0.00056802
29	Yes	6	0.00047783	0.00057495
30	Yes	6	0.00047930	0.00029639
31	Yes	6	0.00047761	0.00056350
32	Yes	6	0.00047752	0.00056921
33	Yes	6	0.00047906	0.00029589
34	Yes	6	0.00047750	0.00057356
35	Yes	6	0.00047759	0.00056690
36	Yes	6	0.00047928	0.00029789
37	Yes	6	0.00047781	0.00057849
38	Yes	6	0.00047790	0.00057242
39	Yes	5	0.00000001	0.00001513
40	Yes	5	0.00000001	0.00035775
41	Yes	5	0.00000001	0.00036339
42	Yes	5	0.00000001	0.00001729
43	Yes	5	0.00000001	0.00035509
44	Yes	5	0.00000001	0.00036045
45	Yes	5	0.00000001	0.00001509
46	Yes	5	0.00000001	0.00036089
47	Yes	5	0.00000001	0.00035545
48	Yes	5	0.00000001	0.00001730
49	Yes	5	0.00000001	0.00036376
50	Yes	5	0.00000001	0.00035819

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load	Tilt	Twist
	ft	28.384	Comb.	\circ	\circ
L1	$97.5-50.79$		49	2.5211	0.0012

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	Deflection	Load	\circ	\circ	
	$f t$	in	Comb.	\circ	\circ
L2	$54.21-1.5$	8.739	48	1.5431	0.0004

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature $f t$
97.50	Lighting Rod 5/8" x 7^{\prime}	49	28.384	2.5211	0.0012	11573
90.00	RDIDC-9181-PF-48	49	24.508	2.3626	0.0011	7715

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz. Noflection	Gov. Load	Tilt	Twist
	in	It	Comb.	\circ	\circ
L1	$97.5-50.79$	108.284	20	9.6467	0.0047
L2	$54.21-1.5$	33.365	20	5.9004	0.0013

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature $f t$
97.50	Lighting Rod 5/8' x 7^{\prime}	20	108.284	9.6467	0.0047	3152
90.00	RDIDC-9181-PF-48	20	93.504	9.0392	0.0040	2100

Compression Checks

Pole Design Data									
Section No.	Elevation	Size	L	L_{u}	Kl/r		P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		ft	ft		$i n^{2}$	$l b$	$l b$	ϕP_{n}
L1	97.5-95.2216	TP23.05x16x0.1875	46.71	0.00	0.0	9.6151	-4944.00	562482.00	0.009
	$\begin{gathered} 95.2216- \\ 92.9432 \end{gathered}$					9.8197	-5037.11	574454.00	0.009
	$\begin{gathered} 92.9432- \\ 90.6647 \end{gathered}$					10.0244	-5134.05	586426.00	0.009
	90.6647 -					10.2290	-8173.79	598398.00	0.014
	$\begin{gathered} 88.3863 \\ 88.3863 \\ 86.1079 \end{gathered}$					10.4337	-8286.25	610371.00	0.014

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		in ${ }^{2}$	$l b$	$l b$	ϕP_{n}
11.8768 -						22.6880	-15683.60	1327250.00	0.012
9.28263									
9.28263 -						22.9942	-16014.10	1345160.00	0.012
6.68842									
6.68842 -						23.3004	-16348.50	1363070.00	0.012
4.09421									
4.09421-1.5						23.6066	-16686.70	1380990.00	0.012

Pole Bending Design Data

Section	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	Ratio No.	$f t$		$M_{u x}$	$M_{u y}$

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & 20 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Projec	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$M_{u y}$	$\phi M_{n y}$	Ratio $M_{u y}$
$f t$			$l b-f t$	$l b-f t$	$\phi M_{n x}$	$l b-f t$	$l b-f t$	$\phi M_{n y}$
	45.6016 -		535285.83	671944.17	0.797	0.00	671944.17	0.000
43.0074								
	43.0074 -		564986.67	692877.50	0.815	0.00	692877.50	0.000
40.4132								
	40.4132 -		594898.33	712718.33	0.835	0.00	712718.33	0.000
37.8189								
	37.8189 -		625013.33	732743.33	0.853	0.00	732743.33	0.000
35.2247								
	35.2247 -		655323.33	752950.00	0.870	0.00	752950.00	0.000
32.6305								
	32.6305 -		685820.83	773332.50	0.887	0.00	773332.50	0.000
30.0363								
	30.0363 -		716499.17	793888.33	0.903	0.00	793888.33	0.000
	27.4421							
	27.4421 -		747351.67	814610.83	0.917	0.00	814610.83	0.000
24.8479								
	24.8479 -		778370.83	835500.00	0.932	0.00	835500.00	0.000
22.2537								
	22.2537 -		809550.00	856541.67	0.945	0.00	856541.67	0.000
19.6595								
	19.6595 -		840883.33	877750.00	0.958	0.00	877750.00	0.000
17.0653 (${ }^{\text {c }}$								
	17.0653 -		872366.67	899100.00	0.970	0.00	899100.00	0.000
	14.4711							
	14.4711 -		903983.33	920600.00	0.982	0.00	920600.00	0.000
11.8768 (${ }^{\text {c }}$								
	11.8768 -		935733.33	942241.67	0.993	0.00	942241.67	0.000
9.28263								
	9.28263 -		967616.67	964025.00	1.004	0.00	964025.00	0.000
	6.68842 -		999616.67	985941.67	1.014	0.00	985941.67	0.000
4.09421								
	4.09421-1.5		1031733.33	1007983.33	1.024	0.00	1007983.33	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	Actual T_{u}	ϕT_{n}	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$
$f t$			$l b$	$l b$	ϕV_{n}	$l b-f t$	$l b-f t$	ϕT_{n}
L1	97.5-95.2216	TP23.05x16x0.1875	5163.21	168744.00	0.031	0.00	238755.83	0.000
	$\begin{gathered} 95.2216- \\ 92.9432 \end{gathered}$		5270.03	172336.00	0.031	0.00	249027.50	0.000
	$\begin{gathered} 92.9432- \\ 90.6647 \end{gathered}$		5376.49	175928.00	0.031	0.00	259515.83	0.000
	$\begin{gathered} 90.6647- \\ 88.3863 \end{gathered}$		9724.18	179520.00	0.054	0.01	270220.00	0.000
	$\begin{gathered} 88.3863- \\ 86.1079 \end{gathered}$		9824.31	183111.00	0.054	0.01	281140.83	0.000
	$\begin{gathered} 86.1079- \\ 83.8295 \end{gathered}$		9923.03	186703.00	0.053	61.24	292278.33	0.000
	$\begin{gathered} 83.8295- \\ 81.5511 \end{gathered}$		10017.20	190295.00	0.053	61.22	303631.67	0.000
	$\begin{gathered} 81.5511- \\ 79.2726 \end{gathered}$		10108.80	193886.00	0.052	61.19	315201.67	0.000
	$\begin{gathered} 79.2726- \\ 76.9942 \end{gathered}$		10197.90	197478.00	0.052	61.15	326988.33	0.000

Pole Interaction Design Data

Section No.	Elevation	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$	Comb. Stress	Allow. Stress	Criteria
	$f t$	ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L1	97.5-95.2216	0.009	0.050	0.000	0.031	0.000	0.060	1.050	4.8.2
	$\begin{gathered} 95.2216- \\ 92.9432 \end{gathered}$	0.009	0.096	0.000	0.031	0.000	0.106	1.050	4.8.2
	$\begin{gathered} 92.9432- \\ 90.6647 \end{gathered}$	0.009	0.140	0.000	0.031	0.000	$\begin{gathered} 0.149 \\ \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 90.6647- \\ 88.3863 \end{gathered}$	0.014	0.206	0.000	0.054	0.000	0.222	1.050	4.8.2
	$\begin{gathered} 88.3863- \\ 86.1079 \end{gathered}$	0.014	0.278	0.000	0.054	0.000	$\begin{gathered} 0.294 \\ y \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 86.1079- \\ 83.8295 \end{gathered}$	0.014	0.345	0.000	0.053	0.000	${ }^{0.361}$	1.050	4.8.2
	$\begin{gathered} 83.8295- \\ 81.5511 \end{gathered}$	0.013	0.409	0.000	0.053	0.000	0.425	1.050	4.8.2
	$\begin{gathered} 81.5511- \\ 79.2726 \end{gathered}$	0.013	0.470	0.000	0.052	0.000	0.486	1.050	4.8.2
	$\begin{gathered} 79.2726- \\ 76.9942 \end{gathered}$	0.013	0.527	0.000	0.052	0.000	0.543	1.050	4.8.2
	$\begin{gathered} 76.9942- \\ 74.7158 \end{gathered}$	0.013	0.581	0.000	0.051	0.000	0.597	1.050	4.8.2
	$\begin{gathered} 74.7158- \\ 72.4374 \end{gathered}$	0.013	0.633	0.000	0.051	0.000	$\begin{gathered} 0.649 \\ \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 72.4374- \\ 70.1589 \end{gathered}$	0.013	0.681	0.000	0.050	0.000	0.697	1.050	4.8.2
	$\begin{gathered} 70.1589 \\ 67.8805 \end{gathered}$	0.013	0.728	0.000	0.050	0.000	0.743	1.050	4.8.2
	$\begin{gathered} 67.8805- \\ 65.6021 \end{gathered}$	0.013	0.771	0.000	0.049	0.000	0.787	1.050	4.8 .2
	$\begin{gathered} 65.6021- \\ 63.3237 \end{gathered}$	0.013	0.813	0.000	0.049	0.000	0.829	1.050	4.8.2
	$\begin{gathered} 63.3237- \\ 61.0453 \end{gathered}$	0.013	0.853	0.000	0.048	0.000	$\begin{gathered} 0.869 \\ \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 61.0453- \\ 58.7668 \end{gathered}$	0.013	0.891	0.000	0.048	0.000	0.906	1.050	4.8 .2
	$\begin{gathered} 58.7668- \\ 56.4884 \end{gathered}$	0.013	0.927	0.000	0.048	0.000	$\begin{gathered} 0.942 \\ \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 56.4884- \\ 54.21 \end{gathered}$	0.013	0.961	0.000	0.047	0.000	0.977	1.050	4.8.2
	54.21-50.79	0.006	0.448	0.000	0.021	0.000	0.454	1.050	4.8.2
L2	54.21-50.79	0.006	0.410	0.000	0.020	0.000	0.417	1.050	4.8.2
	$\begin{gathered} 50.79- \\ 48.1958 \end{gathered}$	0.011	0.758	0.000	0.035	0.000	0.770	1.050	4.8.2
	$\begin{gathered} 48.1958- \\ 45.6016 \end{gathered}$	0.011	0.778	0.000	0.035	0.000	0.790	1.050	4.8.2

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & 23 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 19:35:07 02/23/21 } \end{array}$
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section No.	Elevation	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$	Ratio $M_{u x}$	Ratio $M_{u y}$	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$	Comb. Stress	Allow. Stress	Criteria
	$f t$	ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
	$\begin{gathered} 45.6016- \\ 43.0074 \end{gathered}$	0.011	0.797	0.000	0.035	0.000	$\begin{gathered} 0.809 \\ \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 43.0074- \\ 40.4132 \end{gathered}$	0.011	0.815	0.000	0.035	0.000		1.050	$4.8 .2$
	$\begin{gathered} 40.4132- \\ 37.8189 \end{gathered}$	0.011	0.835	0.000	0.034	0.000		1.050	4.8.2
	$\begin{gathered} 37.8189- \\ 35.2247 \end{gathered}$	0.011	0.853	0.000	0.034	0.000	0.865	1.050	4.8.2
	$\begin{gathered} 35.2247- \\ 32.6305 \end{gathered}$	0.011	0.870	0.000	0.034	0.000	0.883	1.050	4.8.2
	$\begin{gathered} 32.6305- \\ 30.0363 \end{gathered}$	0.011	0.887	0.000	0.033	0.000		1.050	4.8.2
	$\begin{gathered} 30.0363- \\ 27.4421 \end{gathered}$	0.011	0.903	0.000	0.033	0.000	0.915	1.050	4.8.2
	$\begin{gathered} 27.4421- \\ 24.8479 \end{gathered}$	0.011	0.917	0.000	0.033	0.000	0.930	1.050	4.8.2
	$\begin{gathered} 24.8479- \\ 22.2537 \end{gathered}$	0.011	0.932	0.000	0.032	0.000	0.944	1.050	4.8.2
	$\begin{gathered} 22.2537- \\ 19.6595 \end{gathered}$	0.011	0.945	0.000	0.032	0.000	0.958	1.050	4.8.2
	$\begin{gathered} 19.6595- \\ 17.0653 \end{gathered}$	0.012	0.958	0.000	0.032	0.000	0.971	1.050	4.8.2
	$\begin{gathered} 17.0653- \\ 14.4711 \end{gathered}$	0.012	0.970	0.000	0.031	0.000	0.983	1.050	4.8.2
	$\begin{gathered} 14.4711- \\ 11.8768 \end{gathered}$	0.012	0.982	0.000	0.031	0.000	0.995	1.050	4.8.2
	$\begin{gathered} 11.8768- \\ 9.28263 \end{gathered}$	0.012	0.993	0.000	0.031	0.000	1.006	1.050	4.8.2
	$\begin{gathered} 9.28263- \\ 6.68842 \end{gathered}$	0.012	1.004	0.000	0.031	0.000	1.017	1.050	4.8.2
	$\begin{gathered} 6.68842- \\ 4.09421 \end{gathered}$	0.012	1.014	0.000	0.030	0.000	1.027	1.050	4.8.2
	4.09421-1.5	0.012	1.024	0.000	0.030	0.000	1.037	1.050	4.8.2

Section Capacity Table

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} \curvearrowleft P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
L1	97.5-50.79	Pole	TP23.05x16x0.1875	1	-10483.10	816882.11	93.0	Pass
L2	50.79-1.5	Pole	TP30x22.1588x0.25	2	-16686.70	1450039.43	98.7	Pass
						Pole (L2) RATING =	$\begin{gathered} \text { Summary } \\ 98.7 \\ \mathbf{9 8 . 7} \end{gathered}$	Pass Pass

Program Version 8.0.7.5-8/3/2020 File:C:/Users/Ravi Raja/Downloads/2101548 - BOE - Richard D Riddle School/Tnx/SGS_ 2101548 _VB Site_US-MD-5072_02-18-2021.eri

Monopole Base Plate Connection

Site Info	
SGS \#	2101548
Site Name	E
Order \#	

Analysis Considerations	
TIA-222 Revision	H
Grout Considered:	No
$\mathrm{I}_{\text {ar }}$ (in)	2

$|$| Applied Loads | |
| ---: | :---: |
| Moment (kip-ft) | 1031.73 |
| Axial Force (kips) | 16.69 |
| Shear Force (kips) | |
| *TIA-222-H Section 15.5 Applied | |

Connection Properties

Anchor Rod Data
(6) 2-1/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 38" BC

Base Plate Data
44 " OD x 1.75" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

Stiffener Data
N/A

Pole Data
$30 " \times 0.25$ " 18 -sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Connection Properties	Analysis Results		
Anchor Rod Data	Anchor Rod Summary		(units of kips, kip-in)
(6) 2-1/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 38" BC	Pu_c = 219.68	¢Pn_c = 268.39	Stress Rating
	$\mathrm{Vu}=2.07$	$\phi V \mathrm{n}=120.77$	78.0\%
Base Plate Data	$\mathrm{Mu}=\mathrm{n} / \mathrm{a}$	$\phi M n=n / a$	Pass
44" OD x 1.75" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)			
	Base Plate Summary		
Stiffener Data	Max Stress (ksi):	49.21	(Flexural)
N/A	Allowable Stress (ksi):	54	
	Stress Rating:	86.8\%	Pass
Pole Data			
30 " $\times 0.25$ " 18 -sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)			

Drilled Pier Foundation

Material Properties		
Concrete Strength, f'c:	4	ksi
Rebar Strength, Fy:	60	ksi
Tie Yield Strength, Fyt:	40	ksi

Rebar \& Pier Options
Embedded Pole Inputs Belled Pier Inputs

Analysis Results		
Soil Lateral Check	Compression	Uplift
$\mathrm{D}_{\mathrm{v}=0}$ (ft from TOC)	6.36	-
Soil Safety Factor	3.23	-
Max Moment (kip-ft)	1097.57	-
Rating*	39.2\%	-
Soil Vertical Check	Compression	Uplift
Skin Friction (kips)	190.25	-
End Bearing (kips)	132.54	-
Weight of Concrete (kips)	74.81	-
Total Capacity (kips)	322.79	-
Axial (kips)	91.50	-
Rating*	27.0\%	-
Reinforced Concrete Flexure	Compression	Uplift
Critical Depth (ft from TOC)	6.18	-
Critical Moment (kip-ft)	1097.46	-
Critical Moment Capacity	1671.42	-
Rating*	62.5\%	-
Reinforced Concrete Shear	Compression	Uplift
Critical Depth (ft from TOC)	16.43	-
Critical Shear (kip)	157.32	-
Critical Shear Capacity	334.56	-
Rating*	44.8\%	-

Check Limitation

Check Limitation			
Apply TIA-222-H Section 15.5:	\square		
N/A			\square
Shear Design Options			
Check Shear along Depth of Pier:	\square		
Utilize Shear-Friction Methodology:	\square		
Override Critical Depth:	\square		
Go to Soil Calculations			

Soil Interaction Rating*	$\mathbf{3 9 . 2 \%}$
Structural Foundation Rating*	$\mathbf{6 2 . 5 \%}$
*Rating per TIA-222-H Section 15.5	

Soil Profile														
Groundwater Depth		19	\# of Layers											
Layer	Top (ft)	Bottom (ft)	Thickness (ft)	$\begin{aligned} & \mathbf{V}_{\text {soil }} \\ & (\mathrm{pcf}) \end{aligned}$	$\boldsymbol{Y}_{\text {concrete }}$ (pcf)	Cohesion (ksf)	Angle of Friction (degrees)	Calculated Ultimate Skin Friction Comp (ksf)	Calculated Ultimate Skin Friction Uplift (ksf)	Ultimate Skin Friction Comp Override (ksf)	Ultimate Skin Friction Uplift Override (ksf)	Ult. Gross Bearing Capacity (ksf)	SPT Blow Count	Soil Type
1	0	3	3	110	150		0	0.000	0.000					Cohesionless
2	3	8	5	110	150		25	0.477	0.477				10	Cohesionless
3	8	19	11	115	150		30	1.012	1.012				10	Cohesionless
4	19	21	2	53	87.6		30	1.313	1.313			9	10	Cohesionless

ASCE 7 Hazards Report

Address:

No Address at This Location
$\begin{array}{lll}\text { Standard: } & \text { ASCE/SEI 7-16 } & \text { Elevation: } \\ \text { Risk Category: } & \text { II } & \text { Latitude: } 39.47 \mathrm{ft} \text { (NAVD 88) } \\ \text { Soil Class: } & \text { D - Stiff Soil } & \text { Longitude: -77.066492 }\end{array}$

Wind

Results:

Wind Speed:	113 Vmph
10-year MRI	75 Vmph
25 -year MRI	84 Vmph
50 -year MRI	89 Vmph
100 -year MRI	95 Vmph

Data Source:
Date Accessed:

ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2 Thu Feb 182021

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

AMERICAN SOCIETY OF CIVIL ENGINEERS

Seismic

Site Soil Class:
D - Stiff Soil

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.134	$\mathrm{~S}_{\mathrm{D} 1}:$	0.069
$\mathrm{~S}_{1}:$	0.043	$\mathrm{~T}_{\mathrm{L}}:$	8
$\mathrm{~F}_{\mathrm{a}}:$	1.6	$\mathrm{PGA}:$	0.07
$\mathrm{~F}_{\mathrm{V}}:$	2.4	$\mathrm{PGA}_{\mathrm{M}}:$	0.111
$\mathrm{~S}_{\mathrm{MS}}:$	0.215	$\mathrm{~F}_{\mathrm{PGA}}:$	1.6
$\mathrm{~S}_{\mathrm{M} 1}:$	0.104	$\mathrm{I}_{\mathrm{e}}:$	1
$\mathrm{~S}_{\mathrm{DS}}:$	0.143	$\mathrm{C}_{\mathrm{V}}:$	0.7

Seismic Design Category
B

Data Accessed:
Date Source:

Thu Feb 182021
USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIVIL ENGINEERS
Ice

Results:

Ice Thickness:
Concurrent Temperature:
Gust Speed:
Data Source:
Date Accessed:
1.00 in.

15 F
40 mph
Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Thu Feb 182021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 500 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Attachment 2:
 Collocation Application

COLOCATION APPLICATION
US-MD-5072
Vertical Bridge REIT, LLC. 750 Park of Commerce Drive

SUMMARY

PRIMARY INFO

Application \#: C-103052

Application Version: 2 (Submitted: 2/12/2021 12:11:00 PM)
Application Type: Broadband
Application Name: DCWDC00428A
Lease Type: New Lease
Description:
Installing (6) new antennas, (12) RRUs (1) OVP, and (1) Hybrid Cable - 10×15 ground space needed for platform and shelter

VERTICAL BRIDGE SITE INFO

VB Site \#:

VB Site Name:
US-MD-5072

Latitude: $\quad 39.05946111$
Longitude: $\quad-77.06649167$
Structure Type: Monopole
Structure Height: 100.0000
Site Address: 12501-A Dalewood Drive -
Silver Spring, MD 20906

VERTICAL BRIDGE DEAL TEAM

RLM: Floyd Jenkins FJenkins@verticalbridge.com (301) 667-0069

RLS: Sam Bowden
SBowden@verticalbridge.com

ROM:Jeremy Potts
JPotts@verticalbridge.com (502) 295-7552

TENANT LEGAL INFO

Tenant Legal Name:	DISH Wireless L.L.C.
State of Registration:	Colorado
Type of Entity:	LLC
Carrier NOC \#:	8666246874
Tenant Site \#:	DCWDC00428A
Tenant Site Name:	DCWDC00428A

APPLICANT

Name:	Cherisa Small
Address	6700 Alexander Bell Drive
	Suite 200
	Columbia, MD 21046
Phone Number::	$(301) 801-9035$
Email Address:	cherisa.small@dish.com

FINAL LEASED RIGHTS CONFIGURATION TOTALS

This is a summary of your remaining existing equipment plus the new equipment.

FINAL EQUIPMENT

Qty	Equipment Type
1	Junction Box
6	Panel
12	RRU

FINAL LINES

Qty	Line Type
1	Hybrid

FREQUENCY \& TECHNOLOGY INFO

Type of Technology:	Broadband Wireless
Is TX Frequency Licensed:	Yes
TX Frequency:	$722-728\|642-652\| 2180-2200 \mid 1995-2020$
Is RX Frequency Licensed:	Yes
RX Frequency:	

MOUNT \& STRUCTURAL ANALYSIS

MOUNT ANALYSIS

Provided by Tenant: No
To Be Run by VB: No
Include Mount Mapping: No

STRUCTURAL HARD COPIES

Required: No

Number of Hard Copies

CONTACTS

INVOICE CONTACT

Attention To	Name	Address	Phone Number 1	Phone Number 2	Email 1	Email 2
	Accounts Payable	P.O. Box 6649 Englewood, CO 80112	$(555) 555-5555$		WirelessAPInvoic es@dish.com	

PO CONTACT

Name	Phone	Email
Accounts Payable	$(555) 555-5555$	WirelessAPInvoices@dish.com

LEASING CONTACT

Name	Phone Number	Email
Cherisa Small	$(301) 801-9035$	cherisa.small@dish.com

NOTICE CONTACT			
Notice To	Attention To	Address	
DISH Wireless L.L.C.		Lease Administration	9601 South Meridian Blvd Englewood, CO 80112

COPY NOTICE CONTACT			
Notice To	Attention To	Address	
DISH Wireless, L.L.C		Attn: Office of the General Counsel	9601 South Meridian Blva. Englewood, CO 80112

RF CONTACT		
Name	Phone Number	Email
Morrie Kebbeh	$(813) 704-7429$	morrie.kebbeh@dish.com

TENANT CONSTRUCTION MANAGER CONTACT

Name	Phone Number	Email
Troy James	$(443) 752-7427$	troy.james@dish.com

EMERGENCY CONTACT

Name	Phone Number	Email
DISH WIRELESS NOC	$(866) 624-6874$	noc.alerts@dish.com

LINE \& EQUIPMENT

NEW LINE(S)

Qty	Line Type	Line Size(in.)	Line Location	Comments
1	Hybrid	1.6	Exterior	

NEW EQUIPMENT										
Qty	Equipment Type	RAD Height	Mount (H')	Mount Type	Manufacturer	Model Number	Dimensions (H"xW"xD")	Weight (Lbs.)	Azimuth	Comments
1	Junction Box	90.00	90.00	Platform	Raycap	RDIDC-9181-PF -48	$\begin{aligned} & 8.00 \times 14.00 \\ & \times 16.00 \end{aligned}$	21.85	0	
2	RRU	90.00	90.00	Platform	Fujitsu	$\begin{aligned} & \text { TA0802 } \\ & \text { 5-B604 } \end{aligned}$	$\begin{aligned} & 7.87 \times 14.96 \\ & \times 15.75 \end{aligned}$	63.93	120	(1) Installed RRU; (1) Reserved RRU
2	RRU	90.00	90.00	Platform	Fujitsu	$\begin{aligned} & \hline \text { TA0802 } \\ & 5-\mathrm{B} 604 \end{aligned}$	$\begin{aligned} & 7.87 \times 14.96 \\ & \times 15.75 \end{aligned}$	63.93	240	(1) Installed RRU; (1) Reserved RRU
2	RRU	90.00	90.00	Platform	Fujitsu	$\begin{aligned} & \hline \text { TA0802 } \\ & 5-\mathrm{B} 605 \end{aligned}$	$\begin{aligned} & 15.75 \times \\ & 14.96 \times 9.06 \end{aligned}$	74.95	0	(1) Installed RRU; (1) Reserved RRU
2	Panel	90.00	90.00	Platform	JMA	MX08F RO66520_VOF	$\begin{aligned} & \hline 72.00 \times \\ & 20.00 \times 8.00 \end{aligned}$	54.00	240	(1) Antenna Installed; (1) Antenna Reserved
2	Panel	90.00	90.00	Platform	JMA	MX08F RO66520_VOF	$\begin{aligned} & 72.00 \times \\ & 20.00 \times 8.00 \end{aligned}$	54.00	0	(1) Antenna Installed; (1) Antenna Reserved

COLOCATION APPLICATION
Vertical Bridge REIT, LLC.
US-MD-5072
750 Park of Commerce Drive
Version 2
Suite 200
DISH Wireless L.L.C.
Boca Raton, FL 33487

2	RRU	90.00	90.00	Platform	Fujitsu	TA0802 $5-B 605$	$15.75 \times$ 14.96×9.06	74.95	240 (1) Installed RRU; (1) Reserved RRU		
2	RRU	90.00	90.00	Platform	Fujitsu	TA0802 $5-B 605$	$15.75 \times$ 14.96×9.06	74.95	120 (1) Installed RRU; (1) Reserved RRU 2	RRU	90.00

NEW EQUIPMENT CABINET(S)

Quantity of Cabinets	Cabinet Dimensions (H x W x D)	Manufacturer	Comments
1	$74.00 \times 32.00 \times 32.10$	Charles	

ADDITIONAL SITE REQUIREMENTS

GROUND \& INTERIOR SPACE REQUIREMENTS

Requirement Type	Total Lease Area (L x W)	Cabinet Required	Cabinet Area (L x W)	Shelter Required	Shelter Pad (L x W)	Comments
New	10.00×15.00	Yes	3.00×3.00		x	

GENERATOR REQUIREMENTS

Requirement Type	Fuel Type	Kilowatt Size	Pad Dimensions $(\mathrm{L} \times$ D)	Generator Manufacturer	Fuel Tank Manufacturer	Comments
No Changes			x			

AC POWER REQUIREMENTS

Meter Type	Additional Details	Comments
New Tenant Meter		

BACKHAUL REQUIREMENTS

Requirement Type	Cable Type	Number Of Points Of Entry	Riser Size (Inches)	Comments
Not Required				

SUPPLEMENT TO THE MASTER LEASE AGREEMENT (Pursuant and subject to the MLA)

THIS SUPPLEMENT TO THE MASTER LEASE AGREEMENT ("SLA") is entered into as of
\qquad ("Effective Date"), by and between VB-S1 Assets, LLC, a Delaware limited liability company ("Lessor"), whose address is 750 Park of Commerce Drive, Suite 200, Boca Raton, Florida 33487, and DISH Wireless L.L.C., a Colorado limited liability company ("Lessee"), whose address is 9601 South Meridian Blvd., Englewood, Colorado, 80112.

BACKGROUND

WHEREAS, Lessor's Affiliate, Vertical Bridge REIT, LLC, and Lessee have entered into that certain MLA dated January 29, 2021 (the "MLA"). Such MLA provides that Lessor or its Affiliates and Lessee will enter into separate SLAs on a Site-by-Site basis as mutually agreed upon by the Parties, pursuant to which Lessor or its Affiliates will lease to Lessee certain available space at a Site.

AGREEMENT

NOW, THEREFORE, for good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, and intending to be legally bound hereby, the Parties agree as follows:

1. Site Information. The Leased Property, as more particularly described in Section 6 hereof, means:
a. Lessee Site ID: DCWDC00428A
b. Lessor Site ID: US-MD-5072 / BOE- Richard D Riddle School
c. Address and/or location of the Site: 12501-A Dalewood Drive, Silver Spring, MD 20906
d. Site coordinates (NAD 83):
i. Latitude: 39.05946111
ii. Longitude: -77.06649167
e. Antenna Space centerline height: 90^{\prime}
f. Ground Space dimensions: $10^{\prime} \times 15^{\prime}$
2. Rent; Term.
a. Rent.
i. Commencing on the SLA Rent Commencement Date, the Basic Rent for this SLA shall be One Thousand Two Hundred Fifty and 00/100 dollars ($\$ 1,250.00$) per month, to be paid in accordance with the terms set forth in Section 4 of the MLA.
ii. Additional Rent, if any, shall be paid in accordance with the terms set forth in Section 4 of the MLA, unless otherwise set forth below, in the amount of: Not Applicable
iii. Rent shall be paid to the following address (or via electronic funds transfer as agreed to by the Parties in Section 4.4 of the MLA):

VB-S1 Issuer, LLC
P.O. Box 743906

Atlanta, GA 30374-3906

For Overnight mail:
Bank of America Lockbox Services
Lockbox \# 743906
6000 Feldwood Road
College Park, GA 30349
b. Term. The term of this SLA shall be as set forth in Section 3 of the MLA, unless set forth herein as follows: Not Applicable.
3. Non-Standard Terms. The Parties acknowledge and agree that the following conditions exist at the Site: (Check all that apply)
$\square \quad$ There are no electrical utilities installed at the Site as of the Effective Date (i.e., neither Lessor nor any Co-User at the Site have electrical utilities installed).

- The Leased Property is located, in whole or in part, on land which is owned, operated or controlled by a Governmental Authority (e.g. Bureau of Land Management or Bureau of Indian Affairs).
\square The Structure on the Site is AM Detuned.
\square Tower Modifications are required prior to the commencement of Lessee's initial Installation at the Site.
\square Ground Space at the Site is not included in the legal interest conveyed to Lessee pursuant to this SLA.

4. Key Prime Agreement Terms.
a. Current term expiration date of the Prime Agreement / final term expiration date of the Prime Agreement: 08/22/2025 / 08/22/2025.
b. Does the Prime Lessor have the right to not renew or terminate the Prime Agreement at the end of the current term or any remaining renewal terms: Not Applicable.
c. Special access rules under the Prime Agreement: See Sections 8, 10, and 17 of the Prime Agreement. Additionally, Prime Lessor approval of Lessee's schedule for performing work at the Site must be provided prior to entry onto the Site.
5. Special Provisions. N/A
6. Site Address and Legal Description of Site. Lessor hereby leases to Lessee, and Lessee leases from Lessor, as applicable, the Site, as more particularly described in Section 1 hereof, and which is comprised of the space on the Structure, Easements and Ground Space on the Parcel at heights and locations as more particularly set forth on Schedule A-1 (Collocation Application), Schedule A-2 (Structure Elevation and Site Plan), and Schedule A-4 (Legal Description of Parcel and/or Survey) (together, as applicable, the "Leased Property"), each of which are attached hereto and incorporated herein.
7. Frequencies. As of the Effective Date, Lessee's initial Installation will use those certain frequencies, in pre-approved transmit power, as set forth on Schedule A-1 (Collocation Application), which is attached hereto and incorporated herein by this reference.
8. MLA; Defined Terms; Incorporation of Background; Prime Agreement. This SLA is entered into pursuant to the MLA. All terms and conditions of the MLA are incorporated herein by this reference and made a part hereof without the necessity of repeating such terms and conditions or attaching the MLA. By executing and delivering this SLA, the Parties hereby agree to be bound by all terms and conditions of the MLA applicable to such Party, and to perform all covenants and agreements of such Party therein. Capitalized terms used in this SLA shall have the same meaning ascribed to them in the MLA unless otherwise indicated herein. The background section set forth above is hereby incorporated into this SLA by this reference in its entirety. A true and correct copy of the Prime Agreements) (subject to redaction in accordance with the MLA) is set forth in Schedule A-3 (Redacted Prime Agreement), which is attached hereto and incorporated herein by this reference.
9. Order of Precedence; Conflict. In the event of an inconsistency, conflict or discrepancy between, or among, (a) Section 1 of this SLA, (b) Schedule A-1 (Collocation Application), and/or (c) Schedule

A-2 (Structure Elevation and Site Plan), Schedule A-1 of this SLA shall govern. In the event of an inconsistency, conflict or discrepancy between (x) the MLA, and (y) this SLA, the terms set forth in this SLA shall control.
[REMAINDER OF PAGE INTENTIONALLY LEFT BLANK. SIGNATURE PAGE FOLLOWS.]

IN WITNESS WHEREOF, the Parties have executed this SLA as of the Effective Date.

LESSOR:

VB-S1 Assets, LLC

Title: CEO

LESSEE:

DISH Wireless L.L.C.
By:

Name: Thomas Fuchs

Title: \qquad Market General Manager

Radio Frequency - Electromagnetic Energy (RF-EME) Jurisdictional Report

Site No. DCWDC00428A
I2501-A Dalewood Dr
Silver Spring, Maryland 20906
$39^{\circ} 3^{\prime} 34.20^{\prime \prime} \mathrm{N},-77^{\circ} 3^{\prime} 59.40^{\prime \prime}$ W NAD83

EBI Project No. 6221001331
September 27, 2021

Prepared for:
Dish Wireless

Prepared by:

Table of Contents
EXECUTIVE SUMMARY 1
I. 0 INTRODUCTION 2
2.0 SITE DESCRIPTION 2
3.0 WOrst-Case Predictive Modeling 3
4.0 Mitigation/Site Control Options 4
5.0 Summary and Conclusions 5
6.0 LIMITATIONS 5

ApPendices

Appendix A Certifications
 Appendix B Radio Frequency Electromagnetic Energy Safety / Signage Plans Appendix C Federal Communications Commission (FCC) REQUIREMENTS

EXECUTIVE SUMMARY

Purpose of Report

EnviroBusiness Inc. (dba EBI Consulting) has been contracted by Dish Wireless to conduct radio frequency electromagnetic (RF-EME) modeling for Dish Wireless Site DCWDC00428A located at I2501-A Dalewood Dr in Silver Spring, Maryland to determine RF-EME exposure levels from proposed Dish Wireless communications equipment at this site. As described in greater detail in Appendix C of this report, the Federal Communications Commission (FCC) has developed Maximum Permissible Exposure (MPE) Limits for the general public and for occupational activities. This report summarizes the results of RF-EME modeling in relation to relevant FCC RF-EME compliance standards for limiting human exposure to RF-EME fields.

Statement of Compliance

A site is considered out of compliance with FCC regulations if there are areas that exceed the FCC exposure limits and there are no RF hazard mitigation measures in place. Any carrier which has an installation that contributes more than 5% of the applicable MPE must participate in mitigating these RF hazards.

As presented in the sections below, based on worst-case predictive modeling, there are no modeled areas on any accessible rooftop or ground-level walking/working surface related to the proposed antennas that exceed the FCC's occupational or general public exposure limits at this site.

At the nearest walking/working surfaces to the Dish Wireless antennas, the maximum power density generated by the DISH antennas is approximately $\mathbf{0 . 5 5}$ percent of the FCC's general public limit (0.II percent of the FCC's occupational limit).

The composite exposure level from all carriers on this site is approximately $\mathbf{0 . 7 I}$ percent of the FCC's general public limit ($\mathbf{0 . 1 4}$ percent of the FCC's occupational limit) at the nearest walking/working surface to each antenna.

Recommended control measures are outlined in Section 4.0 and within the Site Safety Plan (attached); Dish Wireless should also provide procedures to shut down and lockout/tagout this wireless equipment in accordance with their own standard operating protocol. Non-telecom workers who will be working in areas of exceedance are required to contact Dish Wireless since only DISH has the ability to lockout/tagout the facility, or to authorize others to do so.

I. 0 INTRODUCTION

Radio frequency waves are electromagnetic waves from the portion of the electromagnetic spectrum at frequencies lower than visible light and microwaves. The wavelengths of radio waves range from thousands of meters to around 30 centimeters. These wavelengths correspond to frequencies as low as 3 cycles per second (or hertz [Hz]) to as high as one gigahertz (one billion cycles per second).

Personal Communication (PCS) facilities used by Dish Wireless in this area will potentially operate within a frequency range of 600 to 5000 MHz . Facilities typically consist of: I) electronic transceivers (the radios or cabinets) connected to wired telephone lines; and 2) antennas that send the wireless signals created by the transceivers to be received by individual subscriber units (PCS telephones). Transceivers are typically connected to antennas by coaxial cables.

Because of the short wavelength of PCS services, the antennas require line-of-site paths for good propagation, and are typically installed a distance above ground level. Antennas are constructed to concentrate energy towards the horizon, with as little energy as possible scattered towards the ground or the sky. This design, combined with the low power of PCS facilities, generally results in no possibility for exposure to approach Maximum Permissible Exposure (MPE) levels, with the exception of in areas in the immediate vicinity of the antennas.

MPE limits do not represent levels where a health risk exists, since they are designed to provide a substantial margin of safety. These limits apply for continuous exposures and are intended to provide a prudent margin of safety for all persons, regardless of age, gender, size or health.

2.0 Site Description

This project site includes the following proposed wireless telecommunication antennas on a monopole located at I250I-A Dalewood Dr in Silver Spring, Maryland.

$\begin{aligned} & \text { 華 } \\ & \stackrel{c}{c} \\ & \stackrel{1}{4} \end{aligned}$												Total EIRP (Watts)
1	Dish	JMA	MX08FRO665-20 02DT 600	600	0	0	62	6.1	134.4077226	11.35	1456.88	2389.29
1	Dish	JMA	MX08FRO665-20 02DT 700	700	0	0	52	6.1	134.4077226	12.05	1711.69	2807.17
I	Dish	JMA	MX08FRO665-20 02DT 2007	2007	0	0	62	6.1	134.4077226	15.75	4012.58	6580.64
1	Dish	JMA	MX08FRO665-20 02DT 2100	2100	0	0	65	6.1	134.4077226	16.75	5051.54	8284.53
2	Dish	JMA	MX08FRO665-20 02DT 600	600	120	0	62	6.1	134.4077226	11.35	1456.88	2389.29
2	Dish	JMA	MX08FRO665-20 02DT 700	700	120	0	52	6.1	134.4077226	12.05	1711.69	2807.17
2	Dish	JMA	MX08FRO665-20 02DT 2007	2007	120	0	62	6.1	134.4077226	15.75	4012.58	6580.64
2	Dish	JMA	MX08FRO665-20 02DT 2100	2100	120	0	65	6.1	134.4077226	16.75	5051.54	8284.53
3	Dish	JMA	MX08FRO665-20 02DT 600	600	240	0	62	6.1	134.4077226	11.35	1456.88	2389.29
3	Dish	JMA	MX08FRO665-20 02DT 700	700	240	0	52	6.1	134.4077226	12.05	1711.69	2807.17
3	Dish	JMA	MX08FRO665-20 02DT 2007	2007	240	0	62	6.1	134.4077226	15.75	4012.58	6580.64
3	Dish	JMA	MX08FRO665-20 02DT 2100	2100	240	0	65	6.1	134.4077226	16.75	5051.54	8284.53
4	T-Mobile	GENERIC	PANEL 6FT 00DT 600	600	0	0	68	6.0	60	12.33	1026.01	1682.66
5	T-Mobile	GENERIC	PANEL 6FT 00DT 700	700	0	0	68	6.0	60	12.33	1026.01	1682.66
6	T-Mobile	GENERIC	PANEL 6FT 00DT 1900	1900	0	0	66	6.0	120	15.84	4604.49	7551.36
7	T-Mobile	GENERIC	PANEL 6FT 00DT 2100	2100	0	0	63	6.0	120	16.39	5226.14	8570.87

8	T-Mobile	GENERIC	PANEL 6FT 00DT 600	600	120	0	68	6.0	60	12.33	1026.01	1682.66
9	T-Mobile	GENERIC	PANEL 6FT 00DT 700	700	120	0	68	6.0	60	12.33	1026.01	1682.66
10	T-Mobile	GENERIC	PANEL 6FT 00DT 1900	1900	120	0	66	6.0	120	15.84	4604.49	7551.36
11	T-Mobile	GENERIC	PANEL 6FT 00DT 2100	2100	120	0	63	6.0	120	16.39	5226.14	8570.87
12	T-Mobile	GENERIC	PANEL 6FT 00DT 600	600	240	0	68	6.0	60	12.33	1026.01	1682.66
13	T-Mobile	GENERIC	PANEL 6FT 00DT 700	700	240	0	68	6.0	60	12.33	1026.01	1682.66
14	T-Mobile	GENERIC	PANEL 6FT 00DT 1900	1900	240	0	66	6.0	120	15.84	4604.49	7551.36
15	T-Mobile	GENERIC	PANEL 6FT 00DT 2100	2100	240	0	63	6.0	120	16.39	5226.14	8570.87

- Note there is I Dish Wireless antenna per sector at this site. For clarity, the different frequencies for each antenna are entered on separate lines.

Ant $\#$	NAME	\mathbf{X}	\mathbf{Y}	Antenna Radiation Centerline	Z-Height Adj. Main Roof	Z-Height Ground
I	Dish	0.9	0.7	90.0	45.0	90.0
2	Dish	16.4	7.8	90.0	45.0	90.0
3	Dish	1.6	16.4	90.0	45.0	90.0
4	T-Mobile	0.9	0.7	97.5	52.5	97.5
5	T-Mobile	4.0	1.1	97.5	52.5	97.5
6	T-Mobile	7.8	1.3	97.5	52.5	97.5
7	T-Mobile	11.1	1.1	97.5	52.5	97.5
8	T-Mobile	16.4	7.8	97.5	52.5	97.5
9	T-Mobile	14.4	10.9	97.5	52.5	97.5
10	T-Mobile	12.7	14.0	97.5	52.5	97.5
11	T-Mobile	10.9	16.4	97.5	52.5	97.5
12	T-Mobile	1.6	16.4	97.5	52.5	97.5
13	T-Mobile	1.1	14.0	97.5	52.5	97.5
14	T-Mobile	2.9	10.9	97.5	52.5	97.5
I5	T-Mobile	4.4	8.2	97.5	52.5	97.5

- Note the Z-Height represents the distance from the antenna centerline.

The above tables contain an inventory of proposed Dish Wireless antennas and other carrier antennas if sufficient information was available to model them. Note that EBI uses an assumed set of antenna specifications and powers for unknown and other carrier antennas for modeling purposes. The FCC guidelines incorporate two separate tiers of exposure limits that are based upon occupational/controlled exposure limits (for workers) and general population/uncontrolled exposure limits for members of the general public that may be exposed to antenna fields. While access to this site is considered uncontrolled, the analysis has considered exposures with respect to both controlled and uncontrolled limits as an untrained worker may access adjacent rooftop locations. Additional information regarding controlled/uncontrolled exposure limits is provided in Appendix C. Appendix B presents a site safety plan that provides a plan view of the monopole with antenna locations.

3.0 Worst-Case Predictive Modeling

EBI has performed theoretical MPE modeling using RoofMaster ${ }^{\text {TM }}$ software to estimate the worst-case power density at the site's nearby broadcast levels resulting from operation of the antennas. RoofMaster ${ }^{\text {TM }}$ is a widely-used predictive modeling program that has been developed by Waterford Consultants to predict RF power density values for rooftop and tower telecommunications sites produced by vertical collinear antennas that are typically used in the cellular, PCS, paging and other communications services. Using the computational methods set forth in Federal Communications Commission (FCC) Office of

Engineering \& Technology (OET) Bulletin 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" (OET-65), RoofMaster ${ }^{\text {TM }}$ calculates predicted power density in a scalable grid based on the contributions of all RF sources characterized in the study scenario. At each grid location, the cumulative power density is expressed as a percentage of the FCC limits. Manufacturer antenna pattern data is utilized in these calculations. RoofMaster ${ }^{\text {TM }}$ models consist of the Far Field model as specified in OET-65 and an implementation of the OET-65 Cylindrical Model (Sula9). The models utilize several operational specifications for different types of antennas to produce a plot of spatially-averaged power densities that can be expressed as a percentage of the applicable exposure limit.

For this report, EBI utilized antenna and power data provided by Dish Wireless and compared the resultant worst-case MPE levels to the FCC's occupational/controlled exposure limits outlined in OET Bulletin 65 . The assumptions used in the modeling are based upon information provided by Dish Wireless and information gathered from other sources. Elevations of walking/working surfaces were estimated based on elevations provided and available aerial imagery. Sector orientation assignments were made assuming coverage is directed to areas of site. Changes to antenna mount heights or placement will impact site compliance. The parameters used for modeling are summarized in the Site Description antenna inventory table in Section 2.0.

One other unknown carrier also has antennas on the monopole. Information about these antennas was included in the modeling analysis.

Based on worst-case predictive modeling, there are no modeled areas on any accessible rooftop or ground-level walking/working surface related to the proposed Dish Wireless antennas that exceed the FCC's occupational or general public exposure limits at this site. At the nearest walking/working surfaces to the Dish Wireless antennas, the maximum power density generated by the Dish Wireless antennas is approximately 0.55 percent of the FCC's general public limit (0.1 I percent of the FCC's occupational limit). The composite exposure level from all carriers on this site is approximately 0.71 percent of the FCC's general public limit (0.14 percent of the FCC's occupational limit) at the nearest walking/working surface to each antenna.

The Site Safety Plan also presents areas where Dish Wireless antennas contribute greater than 5\% of the applicable MPE limit for a site. A site is considered out of compliance with FCC regulations if there are areas that exceed the FCC exposure limits and there are no RF hazard mitigation measures in place. Any carrier which has an installation that contributes more than 5% of the applicable MPE must participate in mitigating these RF hazards.

There are no modeled areas on the rooftop and ground that exceed the FCC's limits for general public or occupational exposure in front of the other carrier antennas.

The inputs used in the modeling are summarized in the Site Description antenna inventory table in Section 2.0. A graphical representation of the RoofMaster ${ }^{\top M}$ modeling results is presented in Appendix B. Microwave dish antennas are designed for point-to-point operations at the elevations of the installed equipment rather than ground level coverage. The maximum power density generated by all carrier antennas, including microwaves and panel antennas, is included in the modeling results presented within this report.

4.0 Mitigation/Site Control Options

EBl's modeling indicates that there are no areas in front of the Dish Wireless antennas that exceed the FCC standards for occupational or general public exposure. All exposures above the FCC's safe limits require that individuals be elevated above the rooftop and ground. In order to alert people accessing the
monopole, a CAUTION sign and an NOC Information sign are recommended for installation 10 feet above ground level at the base of the monopole.

There are no barriers recommended on this site.
These protocols and recommended control measures have been summarized and included with a graphic representation of the antennas and associated signage and control areas in a RF-EME Site Safety Plan, which is included as Appendix B. Individuals and workers accessing the monopole should be provided with a copy of the attached Site Safety Plan, made aware of the posted signage and barriers, and signify their understanding of the Site Safety Plan.

To reduce the risk of exposure, EBI recommends that access to areas associated with the active antenna installation be restricted and secured where possible.

Implementation of the signage and barriers recommended in the Site Safety Plan and in this report will bring this site into compliance with the FCC's rules and regulations.

5.0 SUMMARY AND CONCLUSIONS

EBI has prepared a Radiofrequency - Electromagnetic Energy (RF-EME) Compliance Report for telecommunications equipment installed by Dish Wireless Site Number DCWDC00428A located at I250I-A Dalewood Dr in Silver Spring, Maryland to determine worst-case predicted RF-EME exposure levels from wireless communications equipment installed at this site. This report summarizes the results of RF-EME modeling in relation to relevant Federal Communications Commission (FCC) RF-EME compliance standards for limiting human exposure to RF-EME fields.

As presented in the sections above, based on the FCC criteria, there are no modeled areas on any accessible rooftop or ground-level walking/working surface related to the proposed antennas that exceed the FCC's occupational or general public exposure limits at this site.

Workers should be informed about the presence and locations of antennas and their associated fields. Recommended control measures are outlined in Section 4.0 and within the Site Safety Plan (attached); Dish Wireless should also provide procedures to shut down and lockout/tagout this wireless equipment in accordance with their own standard operating protocol. Non-telecom workers who will be working in areas of exceedance are required to contact Dish Wireless since only Dish Wireless has the ability to lockout/tagout the facility, or to authorize others to do so.

6.0 LIMITATIONS

This report was prepared for the use of Dish Wireless. It was performed in accordance with generally accepted practices of other consultants undertaking similar studies at the same time and in the same locale under like circumstances. The conclusions provided by EBI are based solely on the information provided by the client. The observations in this report are valid on the date of the investigation. Any additional information that becomes available concerning the site should be provided to EBI so that our conclusions may be revised and modified, if necessary. This report has been prepared in accordance with Standard Conditions for Engagement and authorized proposal, both of which are integral parts of this report. No other warranty, expressed or implied, is made.

Appendix A

Certifications

Preparer Certification

I, Rebecca Sinisgalli, state that:

- I am an employee of EnviroBusiness Inc. (d/b/a EBI Consulting), which provides RF-EME safety and compliance services to the wireless communications industry.
- I have successfully completed RF-EME safety training, and I am aware of the potential hazards from RF-EME and would be classified "occupational" under the FCC regulations.
- I am fully aware of and familiar with the Rules and Regulations of both the Federal Communications Commissions (FCC) and the Occupational Safety and Health Administration (OSHA) with regard to Human Exposure to Radio Frequency Radiation.
- I have reviewed the data provided by the client and incorporated it into this Site Compliance Report such that the information contained in this report is true and accurate to the best of my knowledge.

Reviewed and Approved by:

sealed 27sep2021 mike@h2dc.com
H2DC PLLC MD CoA\#: 50517
Michael McGuire
Electrical Engineer
mike@h2dc.com

Note that EBI's scope of work is limited to an evaluation of the Radio Frequency - Electromagnetic Energy (RF-EME) field generated by the antennas and broadcast equipment noted in this report. The engineering and design of the building and related structures, as well as the impact of the antennas and broadcast equipment on the structural integrity of the building, are specifically excluded from EBl's scope of work.

Appendix B

Radio Frequency Electromagnetic Energy
 Safety Information and Signage Plans

Antenna Face Level Simulation

Adjacent Main Roof Level Simulation

Ground Level Simulation

Dish Wireless Signage Plan

Sign	Posting Instructions	Required Signage / Mitigation
	NOC Information Information signs are used to provide contact information for any questions or concerns for personnel accessing the site.	Securely post at the 10 feet above ground level at the base of the monopole in a manner conspicuous to all individuals entering thereon as indicated in the signage plan.
NOTICE $_{4}$ $=$ 2	Guidelines Informational sign used to notify workers that there are active antennas installed and provide guidelines for working in RF environments.	No action required.
$(((0)))$	Notice Used to notify individuals they are entering an area where the power density emitted from transmitting antennas may exceed the FCC's MPE limit for the general public or occupational exposures.	No action required.
	Caution Used to notify individuals that they are entering a hot spot where either the general public or occupational FCC's MPE limit is or could be exceeded.	Securely post at the 10 feet above ground level at the base of the monopole in a manner conspicuous to all individuals entering thereon as indicated in the signage plan.
	Warning Used to notify individuals that they are entering a hot zone where the occupational FCC's MPE limit has been exceeded by 10x.	No action required.

Appendix C

Federal Communications

 Commission (FCC) RequirementsThe FCC has established Maximum Permissible Exposure (MPE) limits for human exposure to Radiofrequency Electromagnetic (RF-EME) energy fields, based on exposure limits recommended by the National Council on Radiation Protection and Measurements (NCRP) and, over a wide range of frequencies, the exposure limits developed by the Institute of Electrical and Electronics Engineers, Inc. (IEEE) and adopted by the American National Standards Institute (ANSI) to replace the 1982 ANSI guidelines. Limits for localized absorption are based on recommendations of both ANSI/IEEE and NCRP.

The FCC guidelines incorporate two separate tiers of exposure limits that are based upon occupational/controlled exposure limits (for workers) and general public/uncontrolled exposure limits for members of the general public.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/ controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general public/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

General public/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment-related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Table I and Figure I (below), which are included within the FCC's OET Bulletin 65, summarize the MPE limits for RF emissions. These limits are designed to provide a substantial margin of safety. They vary by frequency to take into account the different types of equipment that may be in operation at a particular facility and are "time-averaged" limits to reflect different durations resulting from controlled and uncontrolled exposures.

The FCC's MPEs are measured in terms of power (mW) over a unit surface area $\left(\mathrm{cm}^{2}\right)$. Known as the power density, the FCC has established an occupational MPE of 5 milliwatts per square centimeter $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ and an uncontrolled MPE of $\mathrm{I} \mathrm{mW} / \mathrm{cm}^{2}$ for equipment operating in the 1900 MHz frequency range. For the Dish Wireless equipment operating at 600 MHz or 850 MHz , the FCC's occupational MPE is $2.83 \mathrm{~mW} / \mathrm{cm}^{2}$ and an uncontrolled MPE of $0.57 \mathrm{~mW} / \mathrm{cm}^{2}$. For the Dish Wireless equipment operating at 1900 MHz , the FCC's occupational MPE is $5.0 \mathrm{~mW} / \mathrm{cm}^{2}$ and an uncontrolled MPE limit of $1.0 \mathrm{~mW} / \mathrm{cm}^{2}$. These limits are considered protective of these populations.

Table I: Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure

Frequency Range $\mathbf{(M H z)}$	Electric Field Strength (E) $(\mathbf{V / m})$	Magnetic Field Strength (H) $(\mathbf{A} / \mathbf{m})$	Power Density (S) $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	Averaging Time $\left[\mathbf{E D}^{2},[\mathbf{H}]^{2}\right.$, or S $(\mathbf{m i n u t e s)}$
$0.3-3.0$	614	I .63	$(100)^{*}$	6
$3.0-30$	$1842 / \mathrm{f}$	$4.89 / \mathrm{f}$	$\left(900 / \mathrm{f}^{2}\right)^{*}$	6
$30-300$	61.4	0.163	1.0	6
$300-1,500$	--	--	$\mathrm{f} / 300$	6
$1,500-100,000$	--	--	5	6

(B) Limits for General Public/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ${ }^{2}$)	Averaging Time $[E]^{2},[H]^{2}$, or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f²)*	30
30-300	27.5	0.073	0.2	30
300-1,500	--	--	f/l,500	30
1,500-100,000	--	--	1.0	30

$\mathrm{f}=$ Frequency in (MHz)

* Plane-wave equivalent power density

Figure 1. FCC Limits for Maximum Permissible Exposure (MPE)
Plane-wave Equivalent Power Density

Based on the above, the most restrictive thresholds for exposures of unlimited duration to RF energy for several personal wireless services are summarized below:

Personal Wireless Service	Approximate Frequency	Occupational MPE	Public MPE
Microwave (Point-to-Point)	$5,000-80,000 \mathrm{MHz}$	$5.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I} .00 \mathrm{~mW} / \mathrm{cm}^{2}$
Broadband Radio (BRS)	$2,600 \mathrm{MHz}$	$5.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I} .00 \mathrm{~mW} / \mathrm{cm}^{2}$
Wireless Communication (WCS)	$2,300 \mathrm{MHz}$	$5.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I} .00 \mathrm{~mW} / \mathrm{cm}^{2}$
Advanced Wireless (AWS)	$2,100 \mathrm{MHz}$	$5.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I} .00 \mathrm{~mW} / \mathrm{cm}^{2}$
Personal Communication (PCS)	$1,950 \mathrm{MHz}$	$5.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I} .00 \mathrm{~mW} / \mathrm{cm}^{2}$
Cellular Telephone	870 MHz	$2.90 \mathrm{~mW} / \mathrm{cm}^{2}$	$0.58 \mathrm{~mW} / \mathrm{cm}^{2}$
Specialized Mobile Radio (SMR)	855 MHz	$2.85 \mathrm{~mW} / \mathrm{cm}^{2}$	$0.57 \mathrm{~mW} / \mathrm{cm}^{2}$
Long Term Evolution (LTE)	700 MHz	$2.33 \mathrm{~mW} / \mathrm{cm}^{2}$	$0.47 \mathrm{~mW} / \mathrm{cm}^{2}$
Most Restrictive Frequency Range	$30-300 \mathrm{MHz}$	$1.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$0.20 \mathrm{~mW} / \mathrm{cm}^{2}$

MPE limits are designed to provide a substantial margin of safety. These limits apply for continuous exposures and are intended to provide a prudent margin of safety for all persons, regardless of age, gender, size, or health.

Personal Communication (PCS) facilities used by Dish Wireless in this area will potentially operate within a frequency range of 600 to 2100 MHz . Facilities typically consist of: I) electronic transceivers (the radios or cabinets) connected to wired telephone lines; and 2) antennas that send the wireless signals created by the transceivers to be received by individual subscriber units (PCS telephones). Transceivers are typically connected to antennas by coaxial cables.

Because of the short wavelength of PCS services, the antennas require line-of-site paths for good propagation, and are typically installed above ground level. Antennas are constructed to concentrate energy towards the horizon, with as little energy as possible scattered towards the ground or the sky. This design, combined with the low power of PCS facilities, generally results in no possibility for exposure to approach Maximum Permissible Exposure (MPE) levels, with the exception of areas directly in front of the antennas.

FCC Compliance Requirement

A site is considered out of compliance with FCC regulations if there are areas that exceed the FCC exposure limits and there are no RF hazard mitigation measures in place. Any carrier which has an installation that contributes more than 5% of the applicable MPE must participate in mitigating these RF hazards.

1. EXOTHERMC WEDD (2) Two \#2 AMG ARE TNNED SOLD COPPER CNNUCTORS TO GROUND

2. For grouno gono to stel only coat all surfaces wit an ant-oxidant compouno
3. Do wot mstal caile grounong ki at a beno ano alwars drect grouno conouctor
4. Nut d washer shall be placed on the front side of the grouno bar ano bolted on
. all grounding parts and eouiment to ee suppled and installed ey contracto
5. THEE contractor shall be responsibe for intalumg adomonal grouno bar as

YPICAL GROUNDING NOTES

IYPICAL GROUNDING NOTES	No SCALE	1	TYPICAL EXTERIOR TWO HOLE LUG	No SCALE	2	TYPICAL INTERIOR TWO HOLE LUG	No SCALE	3
	WASHER (TPP) SHER (TTP) SHER (TTP) P)			16				
LUG DETAIL	No SCALE	4	CONNECTION OF HYBRID CABLE GROUNDING KIT IO HYBRID TRUNK	No SCALE	5	NOT USED	No Scale	6
NOT USED	No SCALE	7	NOT USED	No SCALE	8	NOT USED	No SCALE	9

6700 Alexander bell drve CoLUMBII, MD 21046

昱

5661 COLUMBA PIKE, SUITE 200
FALLS CHURCH, VA 22041-2868

 \begin{tabular}{|l|l|}
\hline DRAWN BY: \& CHECKED By:

\hline

\hline GMW \& NP \& CDM

\hline RFDS REV \#: \& 0

\hline
\end{tabular} CONSTRUCTION DOCUMENTS

SUвмाTALS		
Rev	DATE	DESCRIPTION
\wedge	3/2/21	Issube for Renem
-	4/8/21	1 Sslee for constuven
	5/3/21	ISsue for consimuctan
2	7/1/2/21	Ssube for constuvenow
${ }^{3}$	9/22/21	ISsuce for consmuchow
A\&E PROJECT NUMBER		

DISH WRELESS PROUECT INFORMATON DCWDC00428A

SITE ACTVIT REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECENING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE STEE YOU MUST
WIRELESS ANO TOWER OWNER NOC \& THE DISH WIRLESS AND TOWER OWNER CONSTUCTTON MANAGER.
2. "LOOK UP" - DISH WIRELESS AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRIT OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDRED DURING ALL STAGES
OF DESIGN, INSTALATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUPMENT INSTALATIONS SHALL

 THE NOC TO GENERATE A SAFETY CLIMB MANTENANCE AND CONTRACTOR NOTICE TICKET.
3. PRIOR TO THE START OF CONSTRUCTION, ALL REOURED JURISIICTIONAL PERMTSS SHALL BE OBTAANED. THIS INCLUDES, BUT
IS NOT LIMTED TO, BULDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTVTIES

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMTED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING
PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBIIT OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTON OF THE WORK CONTANED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDTTIN); FEDERAL, STATE, AND LOCAL REGLATIONS;
AND ANY APPLCABLE INOUSTRY CONSENSUS STANDARD RELATED TO THE CONSTRUCTION ACTVIIES BEING PERFORMED. ALL RIGGING
 REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER
ACCORDANCE WITH ANI/TTA-322 (LATEST EDITION).
5. ALL SITE WORK TO COMPLY WTH DISH WRELESS AND TOWER OWNER INSTALLATON STANDARDS FOR CONSTRUCTION ACTVTIES
ON DISH WRELESS AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALATION, ATERATON, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

8. ${ }^{\text {in }}$ THE CONTRACTOR SHAL INSTALL AL
9. THE CONTRACTOR ShaLL CONTACT UTLLITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERYCES PRIOR TO THE START
10. ALL EXISTING ACTVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILTIES WHERE ENCOUNTERED IN THE WORK, SHALL BE
PROTECTE AT AL TTMES AND WHERE REOURED FOR THE PROPER EEECUTON OF THE WORK, SHALL BE RELOCATED AS DRECTED BY PROTECTED AT ALL TMES AND WHERE REQURED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY
CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVAING OR DRILING PIERS AROUND OR NEAR
 FALL PROTECTI
PROCEDURES.
11. ALL SITE WORK SHAL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFCCATONS,
LATEST APPROVED REVIION.
12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULTING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF
THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE STIE AND THE WORK. IF NECELSAAK
DISPOSED OF LEEALLY.
13. ALL EXISTING INACTVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTLLTIIES, WHICH INTERFERE WTTH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WTH WRELESS AND TONER OWER, AND/OR LOCAL UMLIES.

15. the site shall be graded to cause surface water to flow away from the carrier's equipment and tower areas. 16. THE SUB GRADE SHALL Be COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE
APPLCATON. 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUPMENT OR
DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFED ON THE CONSTRUCTION DRIVEWAY, SHAL BE GRADED TO A UNIFORM
DRAWINGS AND/OR PROJECT SPECIFCCATONS.
18. CONTRATTOR SHAL MINIIZE DIITURBANCE TO EXITTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF
REQURED DURING CONSTRUCTION, SHALL BE IN CONFORMACE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL 19. THE CONTRACTOR SHAL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAR
DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SAISFACTON OF OWNER.
20. CONTTACTOR SHALL LEGGLLY AND PROPERLY DISPOSE OF ALL SCRAP MATERRALS SUCH AS COAXIAL CABLES AND OTHER TTEMS
REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTT
REMOVED FROM THE EXISTING FACLLITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
21. basis. CONTRActor shall leave premises in clean condition. trash and debris should be removed from site on a dally
bill
22. NO FILL OR EMBANKMEN MATERIAL SHALL Be PLACED on frozen ground. frozen materials, snow or ice shall not
BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH WRELESS

TOWER OWNER:TOWER OWNER
2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALY
EXERCIIED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMIAR LOCALITES. IT IS ASSUMED THAT WORK DEPICTED WIL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDCE
OF THE APPLICABLE CODE STANDARDS AND REOUREMENTS AND OF INDUSTRY ACCEPTED STANARD GOOD PRACTCE OF THE AP
CONOITION OR ELEMENT IS (OR CAN BE) EXPLLCITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED CONDITION OR ELEMENT II (OR CAN BE EXPLCITLY SHOON ON THESE DRAWIN.
STANDRD GOOD PRACTICE FOR MSCELANEOUS WORK NOT EXPLICTLY SHOWN.
3. THESE DRAWIGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF
CONSTRUCTION. THE CONTRACTOR SHALL
BE SOLELY RESPONSIBLE FOR THE CONSTUCTON MEANS, METHOCS, TECHNIQU

SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND
 SITE VISTST BY THE ENGINER OR HIS REPRESENT
OBSERVATON OF THE FINISHED STRUCTURE ONLY.
 THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETALLS, GENERAL NOTES, AND SPECIFICATIONS,
GREATER, MORE STRICT REQUREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQURED CONTACT THE ENGINER OF GREATER,
RECORD.
SUBSTANTAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST
IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SELE RESPONSIBILTTT OF THE CONTRACTOR TO

PABCREPANCIES AND/OR CONFLCTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFED AS SOON AS Possible.

7. ALL MATERALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WTH ALL APPLICABLE CODES, REGLATIONS
AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANGES, RULES, ANEGULATONS AND LAWFUL ORDERS OF ANY PUBLLC AUTHORITY REGAROING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED
 UNLESS NOTED OTHERWISE, THE WORK SHALL INCLLDE FURNISHING MAT
SECESARY TO COMPLLETE ALL INSTALATONS AS INDCCATED ON THE DRAWINGS.
9. THL TEsS SPECIFICALYAY STATED OTHERWISE.
10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE
AN ALTERNTEV INSTALATION FOR APPROVAL BY THE CARRER AND TOWER OWNER PRIOR TO PROCEEDNG WTH ANY SUCH CHANGE
 DRAWINGS.
12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURES, LANDSCAPING AND STRUCTURES. ANY
DAMAGED PART SHALL BE REPARED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH WIRELESS AND TOWER OWNER 13. CONTRACTOR SHALL LEGALLY AND PRRPERLY DISPOSE OF ALL SCRAP MATERRALS SUCH AS COAAIAL CABLES AND OTHER TEMS
REMOVED FROM THE EXXSTING FACIITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATON. 14.
basis. CONtractor shall leave premises in clean condition. trash and debris should be removed from site on a daly

700 AlEXANDER BELL DRVE
CoLUMBAI, MD 21046
re i
engineers

mix iuway

DRAWN BY: CHECKED BY: APPROVED BY | GMW | NP | COM |
| :--- | :--- | :--- |

CONSTRUCTION
DOCUMENTS

SUBMITALS		
REV	DATE	DESCRRPT
	/21	ssued
-	4/8/21	Ssued for cosisu
	5/3/21	SSlee for col

0	$4 / 6 / 21$
1	$5 / 3 / 21$
2	$7 / 19 / 21$

7/10/2

AEE PROIECT NUMER

mrless project informatio

DCWDC00428A
12501-A DALEWOOD DR.

SHEET TTLE

general notes

AND CONSTRUCTION SPECIFCATION FOR CAST-IN-PLACE CONCRETE.
2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO be 1000 pss.
3. ALL CONCRETE SHALL HAVE A MINMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO
MORE THAN 90 MINTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACE
TEMPERATURE OF CONCREE SHALL NOT EXCED 90° 'f AT TIME OF PLACEMENT.
4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAN AIR ENTRINING ADMXXURES. AMOUNT OF AIR ENTRAINMENT TO BE MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
5. all steel reinforcing shall conform to astm a615. all welded wire fabric (wwf) shall conform to astm alb5. all SPLICES SHALL BE CLASS "B" TENSION SPLCES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, SPLLCES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE
UNLESS NOTED OTHERWISE. YELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLOWS:
\#4 BARS AND SMALLER 40 ks
\#5 Bars and larger 60 ks
${ }^{6}{ }_{\text {DRAWINGS: }}^{\text {THE }}$
LLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON
CONCRETE CAST AGANST AND PERMANENTLY EXPOSED TO EARTH $3^{\prime \prime}$
CONCRETE EXPOSED TO EARTH OR WEATHER:
\#6 bars and larger 2^{n}
\#5 bars and smaller 1-1/2

- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- slab and walls $3 / 4^{\prime \prime}$
beams and columns $1-1 / 2^{\prime \prime}$

7. A tooled edee or a $3 / 4^{\prime \prime}$ chamfer shall be provided at all exposed edges of concrete, unless noted otherwise,

ELECTRICAL INSTALATION NOTES:

1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WTTH THE PROUECT SPECIFICATIONS, NEC AND ALL APPLCABLL
2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUTS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED
3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
4. ALL CIRCUITS SHALL BE SEGREGATED AND MANTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRTTERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF
THE NATONAL ELLCCRICAL COOE.
 CURRENT TO WHICH THEY ARE SUBBECTED, 22.OOO AC M MNMUM. VERIF AVALLABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE
RATNG OF EIECTRICAL EQUIPMENT IC ACCORDANGE WTH ARTCLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDCTITON.
5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE
LABELED WTH COLOR-CORED INSULATION OR ELECTRICAL TAPE (IM BRAND, $1 / 2^{2}$ " PLASTIC ELECTRICAL TAPE WTH UV PROTECTON, OR LABELED WTH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3 M BRAND,
EQUAL). THE IDENTFICATION METHOD SHALL CONFORM WTH NEC AND OSHA.
6. ALL ELECTRICAL COMPONENTS SHAL BE CLEARLY LABELLE WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE
CONFGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT 10's).
7. PANEL board (ID NUMBERS) SHALL be CLEARIY LABEIED with PLASTC LABELS
8. TIE WRAPS ARE NOT ALLOWED.
9. ALL POWER AND EQUPPMENT GROUND WIRING IN TUBBNG OR CONDUUT SHAL BE SINGLE COPPER CONDCTOR (\#14 OR LARGER)
WWTH TTPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATON UNLESS OTHERWISE SPECFIFD. SUPPLEMENTAL EQUIPMEN GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (H6 OR LARGER) WITH
TPDE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THWW, RHW, OR RHW-2 INSULATON UNLESS OTHERWISE EPECIFED. 11. PPWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (\#14 OR LARGER) UNLESS 11. PPWER AND
OTHERWISE SPECFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TTPE TC CABLE (\#14 OR LARGER), WTH
THPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATON UNLESS OTHERWISE SPECIFED. 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STHLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND ALI ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STLLE, COMPRESSION WIRE LUGS AND WIRE NUTS
14. RACEWAY AND CABLE TRAY Shall be LSted or labeled for electrical use in accordance with nema, ul, ansi/IEEE and 15. ELLCTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUTT (RMC) SHALL BE USED FOR
EXPOSED INDOOR LCOATIONS.
al SCHEDLLE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBows/90s AND ALL APPROVED ABOVE
GRADE PVC CONDUT. 18. LOUDD-TIGHT FLEXIBLE METALLIC CONDUTT (LIQUID-TTTE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VBBATON
OCCURS OR FLEXBIILIT IS NEEDED. 19. CONDUUT AND tUBing Fitings shal be threaded or compression-TTPe and approved for the location used. set
sCrew filings are not acceptable. 20. CABinets, boxes and wire wars shall be labeled for electrical use in accordance with nema, ul, ansi/ieee and the 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD (WIREMOLD SPECMATE WIREWAY).
22. Slotted wiring duct shall be pvC and include cover (pandut tipe e or equal).
23. CONDUTTS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TT STRUCTURE WLLL NOT BE PERMITED. CLOSELY FOLOW THE LINES OF

 MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE
24. EQUPMEN CABNETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET
STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA ((OR BETER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETER) FOR STEELL SHALL MET
EXTERIOR LOCATINS.
25. METAL RECEPTACLE, SWTTCH AND DEVCE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR
EXCEED UL $514 A$ AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR EXCEED UL 514 A AND NEMA OS
BETER) FOR EXTERIOR LOCATIONS.
26. Nonmetallic receptacle, switch and device boxes shal meet or exceed nema os 2 (newest pevision) aid be rated NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETER) FOR EXTERIOR LOCATIONS.
27. THE CONTRACTOR SHALL NOTIF AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH WIRLLESS AND TOWER
OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRBUTION PANEIS.
28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE RREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE
29. install lamicoid label on the meter center to show "oish wireless
30. all empty/spare conduits that are installed are to have a metered mule tape pull cord installed.
dish
wireless.
6700 ALEXANDER BELL DRVE Columbic, MD 21046
architects engine ers 5661 COLUBBA PIKE, SUITE 200
FALIS $\mathrm{CHURCH}, ~ V A$
$22041-2868$

, ater His oocumerr. | GMW | NP | CDM |
| :--- | :--- | :--- | RFDS REV \#

CONSTRUCTION

SUBMITALS		
REV	DATE	DESCRIPTION
\wedge	3/2/21	Sssued for Revem
-	4/6/21	Sslee for constucton
1	5/3/21	ISsuEe for consinuchow
2	7/10/21	Sslee for constuvenom
3	8/28/21	Ssuee for constuvenow
A\&E PROJECT NUMBER		
	REL	PROJECT INFOA

12501-A DALEWOOD DR SILVER SPRING, MD 2090 SHEET TTLE general notes

andine notes:

1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATON, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHA
2. THE CONTRACTOR SHAL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR ACHEVE A TEST RESULT OF 5 OHMS OR LESS.
3. THE CONTRACTOR IS RESPONSIBE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO
PREVENT ANY LOSS OF CONTINUITY NIN THE GROUNDING SYSTEM OR DAMAGE TO THE CONUUTT AND PROVIDE TTESTING RESULTS.
4. METAL CONDUTT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALY CONTINUOUS WITH LSTTED BONOING FITTINGS OR BY
BONOING ACROSS THE DISCONTINUITY WITH \#6 COPPER WIRE UL APPROVED GROUNOING TPPE CONDUTT CLAMPS.
5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR STRANDED COPPER CONDUCTORS
WTH GREN
CQUPMENT
6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL
EQUPMENT GROUND WRES, \#6 STRANDED COPPER OR LARGER FOR INDOOR BTS; \#2 BARE SOLI TINNED COPPER FOR OUTDOOR BTS
7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE
OF THE GROUND BUS ARE PERMITED.

OF THE GROUND BUS ARE PERMITIED.
8. ALL Exterior ground conductors between equipment/ground bars and the ground ring shall be \#2 solid tinned
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT bE USED FOR GROUNING CONNECTION
10. Luse of 90° bends in the protection grounding conductors shall be avoided when 45° bends can be adequately
11. EXOTHERMIC WELDS SHALL be USED FOR ALL GROUNOING CONNECTIONS bELOW GRADE.
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

BAR. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMCALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND
15. APPROVED antioxidant coatings (i.e. CONductive gel or paste) shall be used on all compression and bolted ground
16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL
17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND
18. BOND ALL METALLIC OBJECTS WTTHIN 6 ft OF MAIN GROUND RING WITH (1) \#2 BARE SOLL TINNED COPPER GROUND
CONDUCTOR.
19. GROUND CONDUCTORS USED FOR THE FACILTY GROUNDING AND LIGHTNNG PROTECTION SYSTEMS SHALL NOT BE ROUTED SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUREMENTS OR LOCAL
 CONDITIONL, NON-MEIALLIC MATERIAL SUCH AS PVC CONDUT SHALL BE USED. WHERE USE OF METAL CONDUTIT IS UNAVOIDABLE (i.e.,
NONMETALLC CONDUIT PROHBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONOUT. 20. ALL GROUNDS THAT TRANSTIION FROM BELOW GRADE TO ABOVE GRADE MUST BE \#2 BARE SOLDD TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN $3^{\prime \prime}$ TO $6^{\prime \prime}$ OF CAD-WELD TERMNATIN POINT.
OF THE CONDUIT MUST BE SEALED WITH SLICONE CAULK. (ADD TRANSITONING GROUND STANDARD DETAIL AS WELL).
21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE
 SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALER THAN $2 / 0$ COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO

6700 ALEXANDER BELL DRVE
SUITE 221

令
t ect
enginers
5661 COLUBBA PIKE, SUITE 200
FALLS $\mathrm{CHURCH}, ~ V A$
$22041-2868$

DRAWN BY:		CHECKED Br: 4 APRROVED B	
	Gmw	NP	com
Rros rev \#:			
CONSTRUCTION DOCUMENTS			
Submitals			
Rev	DATE	DESCRRPTION	
	3/2/21	ISsued for Revew	
	4/8/21		
	5/3/21		
	7/18/21		
	ө/28/21		
		PROUECT	

DISH WIRELESS PROJECT INFORMATON DCWDC00428A

12501-A DALEWOOD DR SILVER SPRING, MD 2090

SHEET TTLL
general notes

Application General Infomation				
Applicant Name	Jacobs Telecommunications	Updated		7/19/2021
Application Type	Colocated	Ann. Plan?	Yes	
Carrier	Other	Will site be used to support government telecommunications facilities \qquad or other equipment for government use?		
Solution Type	Other			
Existing	Existing			
		Gvt. Use Desc.		
Application Description				
Install (3) Panel Antennas (1 per sector) on (1) Antenna Mount. Install (6) Radio Units (2 per sector), (1) OVP Device, (1) Hybrid Cable and associated jumpers on existing telecommunications tower. Install (1) metal platform for (2) cabinets, (1) ice bridge, (1) telco-fiber box, (1) GPS unit, (1) safety switch, (1) ciena box, and (1) meter socket on the ground beneath the tower.				

App No:

Screening considerations(New, Colocations, Replacement Apps Only):
This is an existing communications tower without concealment. It is the Applicant's impression that concealment was not required when the tower was zoned.

App No

Antenna Model JMA MX08FRO665-20_V0F
Frequency 642-647; 688-693; 722-728; 1915-1920; 1995-2000; 2000-2020; 2180-2200
RAD Center $\quad 90$ Max ERP $\quad 9064$ Antenna Dimensions $72^{\prime \prime} \times 20$ " $\times 8^{\prime \prime} \quad$ Quantity \square

W I R E L E S S

MX08FRO665-20

NWA ${ }^{\text {TM }}$ X-Pol 8-Port Antenna

X-Pol 8-Port 6 ft 65° Fast Roll Off with Smart Bias-Ts:

4 ports 617-894 MHz and 4 ports $1695-2200 \mathrm{MHz}$

- Fast Roll Off (FRO ${ }^{\text {TM }}$) azimuth beam pattern improves Intra- and Inter-cell SINR
- Excellent passive intermodulation (PIM) performance reduces harmful interference.
- Fully integrated (iRETs) with Smart Bias-Ts \& independent RET control for low and mid bands for ease of network optimization
- SON-Ready array spacing supports beamforming capabilities.
- High total power handling to maximize network efficiency
- Reduced tower loading for ease of site deployment

Fast Roll-Off antennas increase data throughput without compromising coverage

The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference \& Noise Ratio (SINR) by eliminating overlap between sectors .

Non-FRO antenna

Large traditional antenna pattern overlap creates harmful interference. JMA's FRO antenna pattern minimizes overlap, thereby minimizing interference.

LTE throughput	SINR	Speed $(\mathrm{bps} / \mathbf{H z})$	Speed increase	CQI
Excellent	>18	>4.5	$333+\%$	$8-10$
Good	$15-18$	$3.3-4.5$	277%	$6-7$
Fair	$10-15$	$2-3.3$	160%	$4-6$
Poor	<10	<2	0%	$1-3$

The LTE radio automatically selects the best throughput based on measured SINR.

JMA FRO antenna

Electrical specification (minimum/maximum)	Ports 1, 2, 3, 4		Ports 5, 6, 7, 8		
Frequency bands, MHz	617-698	698-894	1695-1880	1850-1990	1920-2200
Polarization	$\pm 45^{\circ}$		$\pm 45^{\circ}$		
Gain over all tilts, max, dBi	13.9	15.0	17.9	18.0	18.8
Horizontal beamwidth (HBW), degrees ${ }^{1}$	68	62	64	61	62
Front-to-back ratio, co-polar power @180 ${ }^{\circ}$, dB	>27	>29	>32	>35	>32
Vertical beamwidth (VBW), degrees ${ }^{1}$	14.2	12.5	5.4	5.2	4.9
Electrical downtilt (EDT) range, degrees	2-14		2-12		
First upper side lobe (USLS) suppression, dB^{1}	≤-16.0	≤-16.5	≤-18.0	≤-18.0	≤-18.0
Minimum cross-polar isolation, port-to-port, dB^{1}	25	25	25	25	25
Max VSWR / return loss, dB	1.5:1 / -14.0		1.5:1 / -14.0		
Max passive intermodulation (PIM), 2x20W carrier, dBc	-153		-153		
Max input power per any port, watts	300		250		
Total composite power all ports (1-8), watts ${ }^{2}$	1500				

1 Typical value over frequency and tilt

Electrical specification (minimum/maximum)	Ports 1, 2, 3,4		Ports 5, 6, 7, 8		
Frequency bands, MHz	$617-698$	$698-894$	$1695-1880$	$1850-1990$	$1920-2200$
Average gain over all tilts, dBi (Gain Tolerance)	13.2 ± 0.7	14.4 ± 0.6	17.5 ± 0.4	17.4 ± 0.4	18.3 ± 0.5
Horizontal beamwidth tolerance (HBW), degrees ${ }^{\mathbf{1}}$	± 5	± 6.5	± 5.5	± 3.5	± 5.0
Vertical beamwidth tolerance (VBW), degrees	± 0.3				
Front-to-back ratio, co-polar power @180$\pm \mathbf{3 0}{ }^{\circ}, \mathbf{d B}$	>27	>25	>25	>26	>24
X-Pol discrimination (CPR) at boresight, dB	>20	>19	17.5	>19	>20
First upper side lobe (USLS) suppression boresight to $\mathbf{2 0}^{\circ}$, dB $^{\mathbf{1}}$	≤-16	≤-15	≤-16	≤-16	≤-16

Mechanical specifications

Dimensions height/width/depth, inches (mm)	$72.0 / 20.0 / 8.0(1828.8 / 508.0 / 203.2)$
Shipping dimensions length/width/height, inches (mm)	$77.3 / 23.8 / 14.5(1963.42 / 605 / 368)$
No. of RF input ports, connector type, and location	$8 \times 4.3-10$ female, bottom
RF connector torque	$96 \mathrm{lbf} \cdot \mathrm{in}(10.85 \mathrm{~N} \cdot \mathrm{~m}$ or $8 \mathrm{lbf} \cdot \mathrm{ft})$
Net antenna weight, lb (kg)	$54(24.5)$
Shipping weight, lb (kg)	$94(42.6)$
Antenna mounting and downtilt kit included with antenna	91900318
Net weight of the mounting and downtilt kit, lb (kg)	$18(8.2)$
Range of mechanical up/down tilt	-2° to 12°
Rated wind survival speed, mph (km/h)	$150(241)$
Frontal and lateral wind loading @ 150 km/h, lbf (N)	$108.1(480.9), 20.5(91.2)$
Effective projected area @ 150 km/h (EPA), frontal, sq ft	4.9

MX08FRO665-20
NWA $V^{\text {TM }}$ X-Pol 8-Port Antenna
Front view Back view

Bottom view

MX08FRO665-20

W LRELESS
NWA $V^{\text {TM }}$ X-Pol 8-Port Antenna
Remote electrical tilt (RET 1000) information

RET location	Integrated into antenna
RET interface connector type	8-pin AISG connector per IEC 60130-9 or RF port Bias-T
RET connector torque	Min $0.5 \mathrm{~N} \cdot \mathrm{~m}$ to max $1.0 \mathrm{~N} \cdot \mathrm{~m}$ (hand pressure \& finger tight)
RET interface connector quantity	2 pairs of AISG male/female connectors and 2 RF port Bias-Ts, ports $1 \& 5$
RET interface connector location	Bottom of the antenna
Total no. of internal RETs $\mathbf{6 1 7} \mathbf{- 8 9 4} \mathbf{~ M H z}$	1
Total no. of internal RETs $\mathbf{1 6 9 5 - 2 2 0 0} \mathbf{~ M H z}$	1
RET input operating voltage, vdc	$10-30$
RET max power consumption, idle state, \mathbf{W}	≤ 2.0
RET max power consumption, normal operating conditions, \mathbf{W}	≤ 10.0
RET communication protocol	Hardware AISG 3.0; firmware AISG 2.0, field-upgradable to AISG 3.0

RET and RF connector topology

Each RET device can be controlled either via the designated external AISG connector or RF port as shown below:

Array topology
4 sets of radiating arrays
R1: 617-894 MHz
R2: 617-894 MHz
B1: 1695-2200 MHz
B2: 1695-2200 MHz

Fujitsu - DiSH Triple-band RU Technical Specifications

RU General Specification	
Part number	TA08025-B605
TRX Configuration	4T4R
Operating Frequency	n 71 \& n29 \& n26 Frequencies (Triple-Band)
Instantaneous Bandwidth	$\begin{gathered} \text { n71: } 35 \mathrm{MHz} \\ \text { n29: } 11 \mathrm{MHz} \\ \text { n26: } 7 \mathrm{MHz} \end{gathered}$
Operation Bandwidth (3GPP)	$\begin{gathered} \mathrm{n} 71: 35 \mathrm{MHz} \\ \mathrm{n} 29: 10 \mathrm{MHz} \\ \mathrm{n} 26: 5 \mathrm{MHz} \end{gathered}$
CC BW	5/10/20 MHz
Capacity	$\begin{gathered} \mathrm{n} 71: 2 \mathrm{Cr}(5 / 10 / 20 \mathrm{MHz}) / \mathrm{NB}-\mathrm{IOT} \\ \mathrm{n} 26: 1 \mathrm{Cr}(5 \mathrm{MHz}) / \mathrm{NB}-\mathrm{IOT} \\ \mathrm{n} 29: 2 \mathrm{Cr}(5 / 10 \mathrm{MHz}) \end{gathered}$
Interface to DU	ORAN 7.2x / 10G optical IF
TX Specification	
Output Power per TX	n71: 30W per port n29: 40W per port n26: 10 W per port
ACLR	Compliant with 3GPP TS 38.104
Transmitter Spurious Emissions	Compliant with 3GPP TS 38.104
EVM	Compliant with 3GPP TS 38.104
RX Specification	
Noise Figure	2.5 dB (normal condition 2.2 dB)
Blocking Features	Compliant with 3GPP TS 38.104
Receiver spurious emissions	Compliant with 3GPP TS 38.104
Mechanical Specification	
Volume	35 L
Dimension	$\mathrm{W}: 400 \mathrm{~mm}, \mathrm{H}: 380 \mathrm{~mm}$, D: 230 mm
Antenna Connector Type	4.3-10 RF connector
Antenna Control Interface	AISG
Power Supply	DC -58~-36V
Power Consumption	<1300W
Weight	34 kg
Environmental	
Humidity (Absolute humidity)	$0.03 \mathrm{~g} / \mathrm{m} 3 \sim 30 \mathrm{~g} / \mathrm{m} 3$
Atmospheric Pressure	Between 70 kPa and 106 kPa
Operating Temperature	$-40^{\circ} \mathrm{C} \sim+55^{\circ} \mathrm{C}$
IP Rating	IP65
Cooling	Passive

Mounting Options		
Pole	TBD	
Wall	TBD	

Base/Tower/Rooftop Solution for RRH Applications RDIDC-9181-PF-48

The deployment of Remote Radio Head (RRH) architecture poses unique challenges to the mobile telecom industry.

Raycap's innovative RRH protection solutions mitigate the risk of damage due to lightning
and provide high levels of availability and reliability to radio equipment.

Features

- Employs the Strikesorb ${ }^{\circledR}$ 30-V1-2CFV Surge Protective Device (SPD) specifically designed for the Remote Radio Head (RRH) installation environment and certified for use in DC applications and at low DC operating voltages (48V)
- The Strikesorb 30-V1-2CFV is a Class I SPD, certified by VDE per the IEC 61643-11 standard as suitable for installation in areas where direct lightning exposure is expected. Strikesorb 30-V1-2CFV is able to withstand direct lightning currents of up to $12.5 \mathrm{kA}(10 / 350)$ and induced surge currents of up to 60kA (8/20).
- Provides very low let through / clamping voltage - unique for a Class I product - as it does not employ spark gaps or other switching elements. Strikesorb offers unique protection levels to the RRH equipment as well as the Base Band Units
- For individual circuit per radio architecture
- Configurable cable ports are designed to accommodate varying diameters of hybrid (combined power and fiber optic) or standard cables
- Fully recognized to the UL 1449 4th Edition Safety Standard
- Patent pending design

Benefits

- Offers unique maintenance-free protection against direct lightning currents
- Protects up to 9 Remote Radio Heads and connects up to 18 fiber pairs
- Utilizes a NEMA 4X rated enclosure, allowing for indoor or outdoor installation at the base, on a roof or tower top

© 2020 Raycap All rights reserved.
G02-01-946 200414

Base/Tower Solution for RRH Applications RDIDC-9181-PF-48

Electrical	
Model Number	RDIDC-9181-PF-48
Nominal Operating Voltage	48 VDC
Nominal Discharge Current [${ }_{\mathrm{n}}$]	$20 \mathrm{kA} \mathrm{8/20} \mathrm{\mu s}$
Maximum Surge Current [$I_{\max }$]	$60 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$
Maximum Impulse (Lightning) Current per IEC 61643-11	12.5kA 10/350 $\mu \mathrm{s}$
Maximum Continuous Operationg Voltage [$U_{\text {c }}$]	75VDC
Response Time [t_{A}]	$<1 \mathrm{~ns}$
Voltage Protection Rating (VPR) per UL 1449 4th Edition	400 V
Let-through Voltage @ 20kA (8/20)	<410V
Let-through Voltage @ 10kA (8/20)	<330V
Voltage Protection Level (VPL) per IEC 61643-11	<200V @ 12.5kA 10/350 s
Fault Monitoring	Local status indicator - dry contact alarm
Circuit Configuration	Parallel; -48VDC suppy-return, return-ground
Protection Class as per IEC 61643-1	Class I
Incoming Power/Fiber	Power: \#10/8/6/4/2 AWG (6 mm² 33.6 mm ${ }^{2}$) power trunk Fiber: LC/LC
Strikesorb Module Type	$30-\mathrm{V} 1-2 \mathrm{CFV}$
Mechanical	
Suppression Connection Method	Compression lug, \#14-\#2 AWG (2.1 mm² -33.6 mm²) Copper; \#12-\#2 AWG (3.3 mm² 33.6 mm²) Aluminum
Fiber Connection Method	24 LC-LC Single mode
Environmental Rating	NEMA 4X
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
UV Resistant	Yes
Combined Wind Load	150 mph (sustained): $110.5 \mathrm{lbs}(491.5 \mathrm{~N}) 195 \mathrm{mph}$ (gust): 186 lbs (827.4N)
Dimensions	$14^{\prime \prime} \times 16^{\prime \prime} \times 8$ "
Estimated Weight	21.85 lbs

Optional Product Configurations
Bridge Kit (required for base unit when pairing with HCS 1.0 legacy cable) Order Part \#: RTMDC-5634-WB-KIT
Standards Gompliance $\&$ Gertifications
Strikesorb modules are compliant to the following Surge Protective Device (SPD) Standards
Standards ANSI/UL 1449 4th Edition, IEEE C62.41, NEMA LS-1, IEC 61643-11 (Class I Protection), IEC 61643-12, EN 61643-11:2002 (including A11:2007)

Product Diagram

Raycap

AWG=American Wire Gauge

C

Prepared by:

SGS Towers
Sinnott Gering and Schmitt Towers, Inc.
10834 Old Mill Rd Suite 8 Omaha, NE 68154
(402)-575-8885

Engineering@sgstowers.com

Structural Analysis Report

Table of Contents

Introduction 1
Existing Structural Information 1
Final Proposed Equipment Loading for DISH Wireless L.L.C. 1
Design Criteria 2
Analysis Results 2
Assumptions 2
Conclusions 3
Calculations Attached
Collocation Application Attached

Design Criteria

The tower was analyzed using tnxTower (Version 8.0.7.5) software to find the internal loads using the following design criteria.

State	Maryland
City / County Building Code	Montgomery County (IBC 2018)
Standard Codes	TIA-222-H
Basic Wind Speed	$113 \mathrm{MPH}($ Vult $)$
Basic Wind Speed w/ Ice	$40 \mathrm{MPH} \mathrm{w} / 1.0$ " Ice

Note: A seismic analysis has been performed and is not controlling.

Analysis Results

Based on the foregoing information, our structural analysis determined that the existing tower is structurally capable of supporting the proposed equipment loads without modification. The base plate and anchor bolts have also been evaluated and are found to be structurally capable of supporting the proposed equipment loads without modification. The structural design report (EEI, Project No. 13160, Drawing No. D13160-98.1) analyzed for drilled pier foundation. An analysis for drilled pier foundation was performed and it was determined to be structurally capable of supporting the proposed equipment loads without modifications.

Assumptions

1. The existing tower has been maintained to manufacturer's specifications and is in good condition.
2. All member connections are considered to have been designed to meet the load carrying capacity of the connected members.
3. Antenna mount loads have been estimated based on generally accepted industry standards.
4. The mounts for the proposed antennas have been analyzed and designed by others.
5. Ultimate Bearing value and blow count for soil has been taken from TIA-222-H, ANNEX F Table F-1:Presumptive Soil Parameters to perform foundation analysis.

Introduction

We have completed our structural analysis of the proposed equipment installation on the foregoing Monopole to determine its ability to support the new loads proposed by DISH Wireless L.L.C. The objective of the analysis is to determine if the Monopole meets the current structural codes and standards with the proposed equipment installation.

Existing Structural Information

The following documents for the existing structure were made available for our structural analysis.

Tower Information	Engineered Endeavors Incorporated, Structural Design Report / Project No: 13160, Drawing No. GS55637, dated August 9, 2005
Foundation Information	Engineered Endeavors Incorporated, Structural Design Report / Project No: 13160, Drawing No. D13160-98.1, dated August 9, 2005
Equipment Information	DISH Wireless - Vertical Bridge Collocation Application No. C-103052 Version 2, dated February 12, 2021. T-Mobile - Loading provided by Vertical Bridge on February 18, 2021
Tower Reinforcement Information	Tower has not been previously reinforced

Final Proposed Equipment Loading for DISH Wireless L.L.C.

The following proposed loading was obtained from the Vertical Bridge Collocation Application:

Antenna/Equipment					Coax	
Mount (ft.)	RAD (ft.)	Qty.	Antenna	Type	Qty.	Size/Type
90.0	-	1	Platform Mount w/ Handrails	Mount	1	1.6" Hybrid
	90.0	6*	JMA MX08FRO665-20_V0F	Panel		
		6*	Fujitsu TA08025-B604	RRU		
		6*	Fujitsu TA08025-B605	RRU		
		1	Raycap RDIDC-9181-PF-48	$\begin{gathered} \hline \text { Junction } \\ \text { Box } \end{gathered}$		

Note: Proposed equipment shown in bold.
Note: Proposed feed lines to be placed on the outside of the pole.
Note: Remainder of T-Mobile reserved rights are considered in the analysis
Note: Remainder of Dish reserved rights are considered in the analysis.
Note: *Designates that half of the quantity is reserved loading.
Note: For all other existing equipment please refer to the tower profile and attached tnxTower output.

Conclusions

The existing tower described above has sufficient capacity to support the proposed loading based on the two governing codes referenced above. The base plate, anchor bolts and foundation have also been evaluated and have sufficient capacity to support the proposed loads.

We appreciate the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance, please call us anytime at 402-575-8885.

Sincerely,

Analysis by:
Reviewed by:

Ravi Siddharth Raja, EI
Project Engineer
Nicholas J. Schmitt, P.E., S.E.
Vice President

Attachment 1:
 Calculations

DESIGNED APPURTENANCE LOADING

| MATERIAL STRENGTH |
| :--- | :--- | :---: | :---: | :---: | :---: |
| GRADE Fy Fu GRADE Fy Fu
 A572-65 65 ksi 80 ksi |

TOWER DESIGN NOTES

1. Tower is located in Montgomery County, Maryland.
2. Tower designed for Exposure C to the TIA-222-H Standard.
3. Tower designed for a 113 mph basic wind in accordance with the TIA-222-H Standard.
4. Tower is also designed for a 40 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Risk Category II.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TOWER RATING: 98.7\%

TORQUE $46 \mathrm{lb}-\mathrm{ft}$ 40 mph WIND - 1.0000 in ICE

TORQUE $120 \mathrm{lb-ft}$ REACTIONS - 113 mph WIND

SGS Towers
Chapell Hill,
NC
Phone: engineering@sgstowers.com
FAX:

${ }^{\text {Job: }}$ SGS\# 2101548		
Project: BOE - Richard D Riddle School (US-MD-5072)		
Client: Vertical Bridge	Drawn by: Ravi Siddharth Raja	App'd:
Code: TIA-222-H	Date: 02/23/21	Scale: NTS
	Ster	${ }^{\text {No. }} \mathrm{E}-1$

TIA-222-H - 113 mph/40 mph 1.0000 in Ice Exposure C Leg Capacity Leg Compression (lb)

SGS TowersChapell Hill,NCPhone: engineering@sgstowers.comFAX.	${ }^{\text {Pob: }}$ SGS\# 2101548		
	Project: BOE - Richard D Riddle School (US-MD-5072)		
	Client: Vertical Bridge	Drawn by: Ravi Siddharth Raja	App'd:
	Code: TIA-222-H	Date: 02/23/21	Scale: NTS
	Path:		Dwg No. E-3

SGS Towers
Chapell Hill,
NC
Phone: engineering@sgstowers.com
${ }^{\text {Pob: }}$ SGS\# 2101548
Project: BOE - Richard D Riddle School (US-MD-5072)
Client: Vertical Bridge \quad Drawn by: Ravi Siddharth Raja ${ }^{\text {Ap }}$
C

Twist (deg)

SGS Towers
Chapell Hill,
NC
Phone: engineering@sgstowers.com

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & \\ & \\ & 1 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
NC Phone: engineering@sgstowers.com FAX. FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower is located in Montgomery County, Maryland.
Tower base elevation above sea level: 371.97 ft .
Basic wind speed of 113 mph .
Risk Category II.
Exposure Category C.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height: 0.00 ft .
Nominal ice thickness of 1.0000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 40 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.05 .
Tower analysis based on target reliabilities in accordance with Annex S.
Load Modification Factors used: $\mathrm{K}_{\text {es }}\left(\mathrm{F}_{\mathrm{w}}\right)=0.95, \mathrm{~K}_{\text {es }}\left(\mathrm{t}_{\mathrm{i}}\right)=0.85$.
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
$\sqrt{ }$ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas
Add IBC .6D+W Combination
Sort Capacity Reports By Component
Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption Poles
Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No Appurtenances
Outside and Inside Corner Radii Are
Known

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & \\ & 2 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	BOE - Richard D Riddle School (US-MD-5072)		$\begin{aligned} & \text { Date } \\ & \text { 19:35:07 02/23/21 } \end{aligned}$
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section	Elevation ft	Section Length $f t$	Splice Length $f t$	Number of Sides	Top Diameter in	$\begin{gathered} \text { Bottom } \\ \text { Diameter } \\ \text { in } \\ \hline \end{gathered}$	Wall Thickness in	Bend Radius in	Pole Grade
L1	97.50-50.79	46.71	3.42	18	16.0000	23.0500	0.1875	0.7500	A572-65
									(65 ksi)
L2	50.79-1.50	52.71		18	22.1588	30.0000	0.2500	1.0000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$

Tapered Pole Properties

Section	Tip Dia.	Area $i n^{2}$	$\begin{gathered} I \\ i n^{4} \end{gathered}$	in	C	I / C $i n^{3}$	$\begin{gathered} J \\ i n^{4} \end{gathered}$	$I t / Q$	$\begin{aligned} & w \\ & i n \\ & \text { in } \end{aligned}$	w / t
L1	16.2179	9.4104	297.2674	5.6134	8.1280	36.5733	594.9259	4.7061	2.4860	13.259
	23.3767	13.6060	898.4973	8.1162	11.7094	76.7330	1798.1770	6.8043	3.7268	19.876
L2	22.9787	17.3846	1054.2438	7.7776	11.2567	93.6550	2109.8748	8.6940	3.4600	13.84
	30.4242	23.6066	2639.6436	10.5612	15.2400	173.2050	5282.7605	11.8056	4.8400	19.36

Tower Elevation ft	Gusset Area (per face) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1 97.50-50.79				1	1	1.05			
L2 50.79-1.50				1	1	1.05			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque Calculation	Component Type	Placement ft	Total Number	Number Per Row	Start/End Position	Width or Diameter in	Perimeter in	Weight plf
Safety Line 3/8	A	No	Surface Ar (CaAa)	97.50-1.50	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	0.3750		0.22
*** Step Bolts	A	No	Surface Ar (CaAa)	97.50-1.50	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	0.6250		0.51
$* * *$ $* * *$ $1.6^{\prime \prime}$ (Dish Wireless) $* * *$	C	No	$\begin{aligned} & \text { Surface Ar } \\ & (\mathrm{CaAa}) \end{aligned}$	90.00-3.00	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	1.6000		1.35

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Component Type	Placement ft	Total Number		$\begin{aligned} & C_{A} A_{A} \\ & f t^{2} / f t \end{aligned}$	Weight $p l f$
$\begin{aligned} & \text { *** } \\ & * * * \end{aligned}$									
7/8" Coax	C	No	No	Inside Pole	97.50-3.00	1	No Ice	0.00	1.54

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & \\ & 3 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	Component Type	Placement $f t$	Total Number		$\begin{gathered} C_{A} A_{A} \\ f t^{2} / f t \end{gathered}$	Weight plf
(T-Mobile)							1/2" Ice	0.00	1.54
***							$1{ }^{\prime \prime}$ Ice	0.00	1.54
1-1/4" Coax	C	No	No	Inside Pole	97.50-3.00	1	No Ice	0.00	0.50
(T-Mobile)							1/2" Ice	0.00	0.50
							$1{ }^{\prime \prime}$ Ice	0.00	0.50

1-5/8" Coax	C	No	No	Inside Pole	97.50-3.00	1	No Ice	0.00	0.82
(T-Mobile)							1/2" Ice	0.00	0.82
							$1{ }^{\prime \prime}$ Ice	0.00	0.82

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation $f t$	Face	A_{R}	A_{F}	$C_{A} A_{A}$ In Face	$C_{A} A_{A}$ Out Face	Weight
	$f t$		$f t^{2}$	$f t^{2}$	$f t^{2}$	$f t^{2}$	$l b$
L1	$97.50-50.79$	A	0.000	0.000	4.671	0.000	34.19
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	6.274	0.000	186.52
L2	$50.79-1.50$	A	0.000	0.000	4.929	0.000	36.08
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	7.646	0.000	201.20

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation $f t$	Face or Leg	Ice Thickness in	A_{R}	A_{F}	$C_{A} A_{A}$ In Face	$C_{A} A_{A}$ Out Face	Weight
	ft	ft		$f t^{2}$	$f t^{2}$	$f t^{2}$	lb	
L1	$97.50-50.79$	A	0.920	0.000	0.000	21.868	0.000	183.40
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	13.491	0.000	297.65
L2	$50.79-1.50$	A	0.831	0.000	0.000	23.076	0.000	193.53
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	16.444	0.000	336.64

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$	$C P_{Z}$
			Ice	Ice	
	$f t$	in	in	in	in
L1	$97.50-50.79$	-0.6037	0.6640	-1.3903	0.2698
L2	$50.79-1.50$	-0.6189	0.7909	-1.4956	0.4122

[^2]

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	K_{a} Ice
L1	1	Safety Line 3/8	$50.79-97.50$	1.0000	1.0000
L1	3	Step Bolts	$50.79-97.50$	1.0000	1.0000
L1	$1.6^{\prime \prime}$	$50.79-90.00$	1.0000	1.0000	
L2	6	Safety Line 3/8	$1.50-50.79$	1.0000	1.0000
L2	1	Step Bolts	$1.50-50.79$	1.0000	1.0000
L2	$1.6^{\prime \prime}$	$3.00-50.79$	1.0000	1.0000	

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
○
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline \multicolumn{10}{|l|}{****}

\hline \multirow[t]{3}{*}{Lighting $\operatorname{Rod} 5 / 8^{\prime \prime} \times 7$ '} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{97.50} \& No Ice \& 0.53 \& 0.53 \& 30.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.24 \& 1.24 \& 35.42

\hline \& \& \& 5.00 \& \& \& 1 " Ice \& 1.97 \& 1.97 \& 45.35

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{| RDIDC-9181-PF-48 |
| :--- |
| (Dish Wireless) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 0.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 0.93 \& 1.07 \& 21.85

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.06 \& 1.20 \& 38.15

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.19 \& 1.35 \& 57.11

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{TA08025-B604 (Dish Wireless)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 1.96 \& 1.03 \& 63.93

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.14 \& 1.17 \& 80.68

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.32 \& 1.31 \& 100.13

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{TA08025-B604 (Dish Wireless)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 1.96 \& 1.03 \& 63.93

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.14 \& 1.17 \& 80.68

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.32 \& 1.31 \& 100.13

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{TA08025-B604 (Dish Wireless)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 1.96 \& 1.03 \& 63.93

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.14 \& 1.17 \& 80.68

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.32 \& 1.31 \& 100.13

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{MX08FRO665-20_V0F (Dish Wireless)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 12.49 \& 5.87 \& 54.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.99 \& 6.32 \& 127.79

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 13.49 \& 6.79 \& 208.26

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{MX08FRO665-20 V0F (Dish Wireless)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 12.49 \& 5.87 \& 54.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.99 \& 6.32 \& 127.79

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 13.49 \& 6.79 \& 208.26

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{| MX08FRO665-20_V0F |
| :--- |
| (Dish Wireless) |} \& \multirow[t]{2}{*}{C} \& \multirow[t]{2}{*}{From Leg} \& 3.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{90.00} \& No Ice \& 12.49 \& 5.87 \& 54.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.99 \& 6.32 \& 127.79

\hline
\end{tabular}

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & \\ & 5 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 19:35:07 02/23/21 } \end{array}$
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

tnxTOWer	Job	Page	
NC			
Phone: engineering@sgstowers.com FAX:	Project	SGS\# 2101548	6 of 24
	Client	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

$l b$

\hline $$
\begin{gathered}
* * * \\
\text { TA08025-B604 } \\
\text { (Dish Wireless) }
\end{gathered}
$$ \& C \& From Leg \& \[

$$
\begin{aligned}
& 2.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.96 \\
& 2.14 \\
& 2.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.03 \\
& 1.17 \\
& 1.31
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
63.93 \\
80.68 \\
100.13
\end{gathered}
$$
\]

\hline $$
\begin{aligned}
& \text { MX08FRO665-20_V0F } \\
& \text { (Dish Wireless) }
\end{aligned}
$$ \& A \& From Leg \& \[

$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[

$$
\begin{aligned}
& 12.49 \\
& 12.99 \\
& 13.49
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.87 \\
& 6.32 \\
& 6.79
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
54.00 \\
127.79 \\
208.26
\end{gathered}
$$
\]

\hline MX08FRO665-20_V0F (Dish Wireless) \& B \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 12.49 \\
& 12.99 \\
& 13.49
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.87 \\
& 6.32 \\
& 6.79
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
54.00 \\
127.79 \\
208.26
\end{gathered}
$$
\]

\hline $$
\begin{gathered}
* * * \\
\text { MX08FRO665-20_V0F } \\
\text { (Dish Wireless) }
\end{gathered}
$$ \& C \& From Leg \& \[

$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 12.49 \\
& 12.99 \\
& 13.49
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.87 \\
& 6.32 \\
& 6.79
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
54.00 \\
127.79 \\
208.26
\end{gathered}
$$
\]

\hline $$
\begin{gathered}
* * * \\
\text { TA08025-B605 } \\
\text { (Dish Wireless) }
\end{gathered}
$$ \& A \& From Leg \& \[

$$
\begin{aligned}
& 2.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.96 \\
& 2.14 \\
& 2.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.19 \\
& 1.33 \\
& 1.48
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
74.95 \\
92.92 \\
113.67
\end{gathered}
$$
\]

\hline | TA08025-B605 |
| :--- |
| (Dish Wireless) | \& B \& From Leg \& \[

$$
\begin{aligned}
& 2.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.96 \\
& 2.14 \\
& 2.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.19 \\
& 1.33 \\
& 1.48
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
74.95 \\
92.92 \\
113.67
\end{gathered}
$$
\]

\hline TA08025-B605 (Dish Wireless) \& C \& From Leg \& $$
\begin{aligned}
& 2.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.96 \\
& 2.14 \\
& 2.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.19 \\
& 1.33 \\
& 1.48
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
74.95 \\
92.92 \\
113.67
\end{gathered}
$$
\]

\hline | ****Dish Reserved Loading*** |
| :--- |
| Dish $1 / 3$ of Remainder Reserved (Dish Wireless) | \& A \& From Leg \& \[

$$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[

$$
\begin{aligned}
& 6.40 \\
& 7.00 \\
& 7.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.20 \\
& 3.80 \\
& 4.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 140.00 \\
& 280.00 \\
& 420.00
\end{aligned}
$$
\]

\hline Dish $1 / 3$ of Remainder Reserved (Dish Wireless) \& B \& From Leg \& \[
$$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 6.40 \\
& 7.00 \\
& 7.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.20 \\
& 3.80 \\
& 4.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 140.00 \\
& 280.00 \\
& 420.00
\end{aligned}
$$
\]

\hline Dish 1/3 of Remainder Reserved (Dish Wireless) \& C \& From Leg \& $$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00 \\
& \hline
\end{aligned}
$$ \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 6.40 \\
& 7.00 \\
& 7.60 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.20 \\
& 3.80 \\
& 4.40 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 140.00 \\
& 280.00 \\
& 420.00 \\
& \hline
\end{aligned}
$$
\]

\hline
\end{tabular}

Tower Pressures - No Ice

$$
G_{H}=1.100
$$

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & 7 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
\(f t\)
\end{tabular} \& \(z\)
\(f t\) \& \(K_{Z}\) \& \[
q_{z}
\]
\[
p s f
\] \& \(A_{G}\)

$f t^{2}$ \& F
a
c
e \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& \[
$$
\begin{gathered}
L e g \\
\%
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| In |
| Face |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline \multirow[t]{3}{*}{L1 97.50-50.79} \& \multirow[t]{3}{*}{73.13} \& \multirow[t]{3}{*}{1.185} \& \multirow[t]{3}{*}{34} \& \multirow[t]{3}{*}{77.061} \& A \& 0.000 \& 77.061 \& \multirow[t]{3}{*}{77.061} \& 100.00 \& 4.671 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 77.061 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 77.061 \& \& 100.00 \& 6.274 \& 0.000

\hline \multirow[t]{3}{*}{L2 50.79-1.50} \& \multirow[t]{3}{*}{26.20} \& \multirow[t]{3}{*}{0.955} \& \multirow[t]{3}{*}{27} \& \multirow[t]{3}{*}{109.676} \& A \& 0.000 \& 109.676 \& \multirow[t]{3}{*}{109.676} \& 100.00 \& 4.929 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 109.676 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 109.676 \& \& 100.00 \& 7.646 \& 0.000

\hline
\end{tabular}

Tower Pressure - With Ice

$G_{H}=1.100$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation
\(\qquad\) \\
\(f t\)
\end{tabular} \& \(z\)
\(f t\) \& \(K_{Z}\) \& \[
q_{z}
\]
\[
p s f
\] \& \(t_{Z}\)
in \& \(A_{G}\)

$f t^{2}$ \& F
a
c
e \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& \[
$$
\begin{gathered}
\text { Leg } \\
\%
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { In } \\
\text { Face } \\
{f t^{2}}^{2}
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline \multirow[t]{3}{*}{L1 97.50-50.79} \& \multirow[t]{3}{*}{73.13} \& \multirow[t]{3}{*}{1.185} \& \multirow[t]{3}{*}{4} \& \multirow[t]{3}{*}{0.9204} \& \multirow[t]{3}{*}{84.226} \& A \& 0.000 \& 84.226 \& \multirow[t]{3}{*}{84.226} \& 100.00 \& 21.868 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 84.226 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 0.000 \& 84.226 \& \& 100.00 \& 13.491 \& 0.000

\hline \multirow[t]{3}{*}{L2 50.79-1.50} \& \multirow[t]{3}{*}{26.20} \& \multirow[t]{3}{*}{0.955} \& \multirow[t]{3}{*}{3} \& \multirow[t]{3}{*}{0.8306} \& \multirow[t]{3}{*}{117.237} \& A \& 0.000 \& 117.237 \& \multirow[t]{3}{*}{117.237} \& 100.00 \& 23.076 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 117.237 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 0.000 \& 117.237 \& \& 100.00 \& 16.444 \& 0.000

\hline
\end{tabular}

Tower Pressure - Service

$$
G_{H}=1.100
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
ft
\end{tabular} \& \(z\)
\(f t\) \& \(K_{Z}\) \& \[
q_{z}
\]
\[
p s f
\] \& \(A_{G}\)

$f t^{2}$ \& | F |
| :--- |
| a |
| c |
| e | \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& Leg \% \& | $C_{A} A_{A}$ |
| :--- |
| In |
| Face |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline \multirow[t]{3}{*}{L1 97.50-50.79} \& \multirow[t]{3}{*}{73.13} \& \multirow[t]{3}{*}{1.185} \& \multirow[t]{3}{*}{9} \& \multirow[t]{3}{*}{77.061} \& A \& 0.000 \& 77.061 \& \multirow[t]{3}{*}{77.061} \& 100.00 \& 4.671 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 77.061 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 77.061 \& \& 100.00 \& 6.274 \& 0.000

\hline \multirow[t]{3}{*}{L2 50.79-1.50} \& \multirow[t]{3}{*}{26.20} \& \multirow[t]{3}{*}{0.955} \& \multirow[t]{3}{*}{7} \& \multirow[t]{3}{*}{109.676} \& A \& 0.000 \& 109.676 \& \multirow[t]{3}{*}{109.676} \& 100.00 \& 4.929 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 109.676 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 109.676 \& \& 100.00 \& 7.646 \& 0.000

\hline
\end{tabular}

Tower Forces - No Ice - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
\(f t\)
\(\qquad\)
\end{tabular} \& Add Weight
\[
l b
\] \& Self Weight
\[
l b
\] \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline L1 \& \multirow[t]{3}{*}{220.72} \& \multirow[t]{3}{*}{1920.63} \& A \& 1 \& 0.73 \& \multirow[t]{3}{*}{34} \& 1 \& 1 \& 77.061 \& \multirow[t]{3}{*}{2127.44} \& \multirow[t]{3}{*}{45.55} \& \multirow[t]{3}{*}{C}

\hline 97.50-50.79 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline \multirow[t]{3}{*}{L2 50.79-1.50} \& \multirow[t]{3}{*}{237.28} \& \multirow[t]{3}{*}{3859.93} \& A \& 1 \& 0.73 \& \multirow[t]{3}{*}{27} \& 1 \& 1 \& 109.676 \& \multirow[t]{3}{*}{2397.60} \& \multirow[t]{3}{*}{48.64} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline
\end{tabular}

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & 8 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	$\begin{aligned} & \hline \text { Date } \\ & \text { 19:35:07 02/23/21 } \end{aligned}$
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section Elevation $f t$	Add Weight lb	Self Weight lb	F a c e	e	C_{F}	q_{z} $p s f$	D_{F}	D_{R}	$\overline{A_{E}}$ $f t^{2}$	F lb	w $p l f$	Ctrl. Face
Sum Weight:	457.99	5780.55						OTM	$\begin{array}{r} 211597.60 \\ 1 \mathrm{~b}-\mathrm{ft} \end{array}$	4525.04		

Tower Forces - No Ice - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& Add Weight
\(\qquad\) lb \& Self Weight
\(\qquad\) lb \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\[
q_{z}
\] \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \[
\overline{A_{E}}
\]
\[
f t^{2}
\] \& \(F\)

$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& 220.72 \& 1920.63 \& A \& 1 \& 0.73 \& 34 \& 1 \& 1 \& 77.061 \& 2127.44 \& 45.55 \& C

\hline 97.50-50.79 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline L2 50.79-1.50 \& 237.28 \& 3859.93 \& A \& 1 \& 0.73 \& 27 \& 1 \& 1 \& 109.676 \& 2397.60 \& 48.64 \& C

\hline \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline Sum Weight: \& 457.99 \& 5780.55 \& \& \& \& \& \& OTM \& $$
211597.60
$$

$$
\mathrm{lb}-\mathrm{ft}
$$ \& 4525.04 \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
\(f t\)
\end{tabular} \& Add Weight
\[
l b
\] \& \begin{tabular}{l}
Self Weight \\
lb
\end{tabular} \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
psf
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \[
\overline{A_{E}}
\]
\[
f t^{2}
\] \& \(F\)

$l b$ \& w
$p l f$ \& Ctrl. Face

\hline L1 \& 220.72 \& 1920.63 \& A \& 1 \& 0.73 \& 34 \& 1 \& 1 \& 77.061 \& 2127.44 \& 45.55 \& C

\hline 97.50-50.79 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline L2 50.79-1.50 \& 237.28 \& 3859.93 \& A \& 1 \& 0.73 \& 27 \& 1 \& 1 \& 109.676 \& 2397.60 \& 48.64 \& C

\hline \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline Sum Weight: \& 457.99 \& 5780.55 \& \& \& \& \& \& OTM \& 211597.60 \& 4525.04 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-ft \& \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& Add Weight
\(\qquad\) \(l b\) \& Self Weight
\(\qquad\) \(l b\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\[
q_{z}
\] \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& \multirow[t]{3}{*}{481.05} \& \multirow[t]{3}{*}{3005.58} \& A \& 1 \& 1.2 \& \multirow[t]{3}{*}{4} \& 1 \& 1 \& 84.226 \& \multirow[t]{2}{*}{478.95} \& \multirow[t]{2}{*}{10.25} \& \multirow[t]{2}{*}{C}

\hline 97.50-50.79 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 84.226 \& \& \&

\hline \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 84.226 \& \& \&

\hline L2 50.79-1.50 \& 530.17 \& 5232.67 \& A \& 1 \& 1.2 \& \multirow[t]{2}{*}{3} \& 1 \& 1 \& 116.500 \& \multirow[t]{2}{*}{524.58} \& \multirow[t]{2}{*}{10.64} \& \multirow[t]{2}{*}{C}

\hline \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 116.500 \& \& \&

\hline
\end{tabular}

tnxTower	Job	SGS\# 2101548	Page
			9 of 24
SGS TowersChapell Hill,NCPhone: engineering@sgstowers.comFAX:	Project	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section Elevation ft	Add Weight $l b$	Self Weight $l b$	$\begin{aligned} & \hline F \\ & a \\ & c \\ & e \end{aligned}$	e	C_{F}	q_{z} $p s f$	D_{F}	D_{R}	A_{E} $f t^{2}$	F lb	w $p l f$	Ctrl. Face
Sum Weight:	1011.22	8238.25	C	1	1.2		1	$\begin{array}{r} 1 \\ \text { OTM } \end{array}$	$\begin{array}{r} 116.500 \\ 47261.79 \\ \mathrm{lb}-\mathrm{ft} \end{array}$	1003.53		

Tower Forces - With Ice - Wind 60 To Face

Section Elevation ft	Add Weight lb	Self Weight lb	F a c e	e	C_{F}	q_{z} psf	D_{F}	D_{R}	$\begin{gathered} A_{E} \\ f t^{2} \end{gathered}$	F $l b$	w plf	Ctrl. Face
L1	481.05	3005.58	A	1	1.2	4	1	1	84.226	478.95	10.25	C
97.50-50.79			B	1	1.2		1	1	84.226			
			C	1	1.2		1	1	84.226			
L2 50.79-1.50	530.17	5232.67	A	1	1.2	3	1	1	116.500	524.58	10.64	C
			B	1	1.2		1	1	116.500			
			C	1	1.2		1	1	116.500			
Sum Weight:	1011.22	8238.25						OTM	47261.79	1003.53		
									lb-ft			

Tower Forces - With Ice - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section \\
Elevation \\
ft
\end{tabular} \& \begin{tabular}{l}
Add \\
Weight \\
lb
\end{tabular} \& Self Weight lb \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

plf \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& 481.05 \& 3005.58 \& A \& 1 \& 1.2 \& 4 \& 1 \& 1 \& 84.226 \& 478.95 \& 10.25 \& C

\hline 97.50-50.79 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 84.226 \& \& \&

\hline \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 84.226 \& \& \&

\hline L2 50.79-1.50 \& 530.17 \& 5232.67 \& A \& 1 \& 1.2 \& 3 \& 1 \& 1 \& 116.500 \& 524.58 \& 10.64 \& C

\hline \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 116.500 \& \& \&

\hline \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 116.500 \& \& \&

\hline Sum Weight: \& 1011.22 \& 8238.25 \& \& \& \& \& \& OTM \& 47261.79 \& 1003.53 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-ft \& \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind Normal To Face

Section Elevation $f t$	Add Weight $l b$	Self Weight $l b$	$\begin{aligned} & F \\ & a \\ & c \\ & e \\ & \hline \end{aligned}$	e	C_{F}	q_{z} $p s f$	D_{F}	D_{R}	$\begin{gathered} A_{E} \\ \\ f t^{2} \\ \hline \end{gathered}$	F $l b$	w $p l f$	Ctrl. Face
L1	220.72	1920.63	A	1	0.73	9	1	1	77.061	564.90	12.09	C
97.50-50.79			B	1	0.73		1	1	77.061			
			C	1	0.73		1	1	77.061			
L2 50.79-1.50	237.28	3859.93	A	1	0.73	7	1	1	109.676	636.64	12.92	C

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } 10 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
$N C$ Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section Elevation \qquad	Add Weight \qquad $l b$	Self Weight \qquad $l b$	$\begin{aligned} & \hline F \\ & a \\ & c \\ & e \end{aligned}$	e	C_{F}	q_{z} $p s f$	D_{F}	D_{R}	A_{E} $f t^{2}$	F $l b$	w $p l f$	Ctrl. Face
Sum Weight:	457.99	5780.55	B	1	0.73 0.73		1	1 1 OTM	$\begin{array}{r} 109.676 \\ 109.676 \\ 56185.99 \\ \mathrm{lb}-\mathrm{ft} \end{array}$	1201.54		

Tower Forces - Service - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\[
f t
\] \& Add Weight lb \& \begin{tabular}{l}
Self Weight \\
lb
\end{tabular} \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F

$l b$ \& w
$p l f$ \& Ctrl. Face

\hline L1 \& 220.72 \& 1920.63 \& A \& 1 \& 0.73 \& 9 \& 1 \& 1 \& 77.061 \& 564.90 \& 12.09 \& C

\hline 97.50-50.79 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline L2 50.79-1.50 \& 237.28 \& 3859.93 \& A \& 1 \& 0.73 \& 7 \& 1 \& 1 \& 109.676 \& 636.64 \& 12.92 \& C

\hline \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline Sum Weight: \& 457.99 \& 5780.55 \& \& \& \& \& \& OTM \& 56185.99 \& 1201.54 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-ft \& \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind 90 To Face

Section Elevation \qquad	Add Weight $l b$	Self Weight \qquad $l b$	F a c e	e	C_{F}	q_{z} $p s f$	D_{F}	D_{R}	$\overline{A_{E}}$ $f t^{2}$	F $l b$	w $p l f$	Ctrl. Face
L1	220.72	1920.63	A	1	0.73	9	1	1	77.061	564.90	12.09	C
97.50-50.79			B	1	0.73		1	1	77.061			
			C	1	0.73		1	1	77.061			
L2 50.79-1.50	237.28	3859.93	A	1	0.73	7	1	1	109.676	636.64	12.92	C
			B	1	0.73		1	1	109.676			
			C	1	0.73		1	1	109.676			
Sum Weight:	457.99	5780.55						OTM	56185.99	1201.54		
									lb-ft			

Force Totals

| $\begin{array}{c}\text { Load } \\ \text { Case }\end{array}$ | $\begin{array}{c}\text { Vertical } \\ \text { Forces }\end{array}$ | $\begin{array}{c}\text { Sum of } \\ \text { Forces } \\ X\end{array}$ | $\begin{array}{c}\text { Sum of } \\ \text { Forces } \\ Z\end{array}$ | $\begin{array}{c}\text { Sum of } \\ \text { Overturning } \\ \text { Moments } M_{x} \\ l b-f t\end{array}$ | $\begin{array}{c}\text { Sum of } \\ \text { Overturning } \\ \text { Moments, } M_{z} \\ l b-f t\end{array}$ | $\begin{array}{c}\text { Sum of Torques } \\ \\ \end{array} \quad l b$ |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | $\left.\begin{array}{lr}l b\end{array}\right]$

Load Case	Vertical Forces lb	Sum of Forces X $l b$	Sum of Forces Z $l b$	Sum of Overturning Moments, M_{x} $l b-f t$	Sum of Overturning Moments, M_{z} lb-ft	Sum of Torques $l b-f t$
Total Weight	13931.84			-37.47	59.77	
Wind 0 deg - No Ice		0.00	-12394.63	-939487.16	59.77	0.00
Wind 30 deg - No Ice		6199.43	-10734.06	-813624.77	-469852.15	-51.28
Wind 60 deg - No Ice		10737.72	-6197.31	-469762.32	-813851.56	-88.82
Wind 90 deg - No Ice		12398.85	0.00	-37.47	-939764.08	-102.56
Wind 120 deg - No Ice		10737.72	6197.31	469687.37	-813851.56	-88.82
Wind 150 deg - No Ice		6199.43	10734.06	813549.82	-469852.15	-51.28
Wind 180 deg - No Ice		0.00	12394.63	939412.21	59.77	0.00
Wind 210 deg - No Ice		-6199.43	10734.06	813549.82	469971.69	51.28
Wind 240 deg - No Ice		-10737.72	6197.31	469687.37	813971.09	88.82
Wind 270 deg - No Ice		-12398.85	0.00	-37.47	939883.61	102.56
Wind 300 deg - No Ice		-10737.72	-6197.31	-469762.32	813971.09	88.82
Wind 330 deg - No Ice		-6199.43	-10734.06	-813624.77	469971.69	51.28
Member Ice	2457.69					
Total Weight Ice	30464.17			-6.70	320.17	
Wind 0 deg - Ice		0.00	-2253.92	-163408.26	320.17	0.00
Wind 30 deg - Ice		1127.27	-1951.95	-141516.60	-81407.73	-19.67
Wind 60 deg - Ice		1952.49	-1126.96	-81707.48	-141236.70	-34.07
Wind 90 deg - Ice		2254.54	0.00	-6.70	-163135.63	-39.35
Wind 120 deg - Ice		1952.49	1126.96	81694.09	-141236.70	-34.07
Wind 150 deg - Ice		1127.27	1951.95	141503.21	-81407.73	-19.67
Wind 180 deg - Ice		0.00	2253.92	163394.87	320.17	0.00
Wind 210 deg - Ice		-1127.27	1951.95	141503.21	82048.06	19.67
Wind 240 deg - Ice		-1952.49	1126.96	81694.09	141877.04	34.07
Wind 270 deg - Ice		-2254.54	0.00	-6.70	163775.96	39.35
Wind 300 deg - Ice		-1952.49	-1126.96	-81707.48	141877.04	34.07
Wind 330 deg - Ice		-1127.27	-1951.95	-141516.60	82048.06	19.67
Total Weight	13931.84			-37.47	59.77	
Wind 0 deg - Service		0.00	-3291.17	-249579.82	0.00	0.00
Wind 30 deg - Service		1646.15	-2850.24	-216159.29	-124776.79	-13.62
Wind 60 deg - Service		2851.21	-1645.59	-124852.71	-216119.73	-23.58
Wind 90 deg - Service		3292.30	0.00	-125.60	-249553.57	-27.23
Wind 120 deg - Service		2851.21	1645.59	124601.51	-216119.73	-23.58
Wind 150 deg - Service		1646.15	2850.24	215908.09	-124776.79	-13.62
Wind 180 deg - Service		0.00	3291.17	249328.62	0.00	0.00
Wind 210 deg - Service		-1646.15	2850.24	215908.09	124776.79	13.62
Wind 240 deg - Service		-2851.21	1645.59	124601.51	216119.73	23.58
Wind 270 deg - Service		-3292.30	0.00	-125.60	249553.57	27.23
Wind 300 deg - Service		-2851.21	-1645.59	-124852.71	216119.73	23.58
Wind 330 deg - Service		-1646.15	-2850.24	-216159.29	124776.79	13.62

Load Combinations

Comb. No.		Description
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 60 deg - No Ice	
7	0.9 Dead+1.0 Wind 60 deg - No Ice	
8	1.2 Dead+1.0 Wind 90 deg - No Ice	
9	0.9 Dead+1.0 Wind 90 deg - No Ice	
10	1.2 Dead+1.0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	

Comb. No.	Description
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0$ Ice+1.0 Temp
29	1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$ Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind $120 \mathrm{deg}+1.0$ Ice+1.0 Temp
32	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp
33	1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0$ Ice+1.0 Temp
34	1.2 Dead+1.0 Wind $210 \mathrm{deg}+1.0$ Ice+1.0 Temp
35	1.2 Dead+1.0 Wind $240 \mathrm{deg}+1.0$ Ice+1.0 Temp
36	1.2 Dead+1.0 Wind $270 \mathrm{deg}+1.0$ Ice+1.0 Temp
37	1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0$ Ice+1.0 Temp
38	1.2 Dead+1.0 Wind $330 \mathrm{deg}+1.0$ Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial $l b$	Major Axis Moment $l b-f t$	Minor Axis Moment $l b-f t$
L1	97.5-50.79	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-26353.11	133.40	163.46
			Max. Mx	20	-10483.11	409666.71	122.53
			Max. My	2	-10483.94	31.98	409591.46
			Max. Vy	20	-10994.49	409666.71	122.53
			Max. Vx	2	-10989.92	31.98	409591.46
			Max. Torque	20			-122.49
L2	50.79-1.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-33345.79	337.99	23.26
			Max. Mx	20	-16686.66	1031731.55	59.90
			Max. My	2	-16686.68	78.95	1031308.50
			Max. Vy	20	-12441.28	1031731.55	59.90
			Max. Vx	2	-12437.04	78.95	1031308.50
			Max. Torque	20			-120.95

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & 13 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 19:35:07 02/23/21 } \end{array}$
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Section No. \& Elevation \(f t\) \& Component Type \& Condition \& \begin{tabular}{l}
Gov. \\
Load \\
Comb.
\end{tabular} \& Axial

$l b$ \& Major Axis Moment $l b-f t$ \& Minor Axis Moment $l b-f t$

\hline
\end{tabular}

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical $l b$	$\begin{gathered} \text { Horizontal, } X \\ l b \end{gathered}$	Horizontal, Z $l b$
Pole	Max. Vert	36	33345.79	2254.74	0.00
	Max. H_{x}	20	16718.21	12398.86	0.00
	Max. H_{z}	2	16718.21	0.00	12394.63
	Max. M_{x}	2	1031308.50	0.00	12394.63
	Max. M_{z}	8	1031575.43	-12398.86	0.00
	Max. Torsion	8	119.76	-12398.86	0.00
	Min. Vert	25	12538.65	6199.43	10734.06
	Min. H_{x}	8	16718.21	-12398.86	0.00
	Min. H_{z}	14	16718.21	0.00	-12394.63
	Min. M_{x}	14	-1031183.63	0.00	-12394.63
	Min. M_{z}	20	-1031731.55	12398.86	0.00
	Min. Torsion	20	-119.76	12398.86	0.00

Tower Mast Reaction Summary

Load Combination	Vertical lb	Shear ${ }_{x}$ $l b$	Shear $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead Only	13931.84	0.00	0.00	-37.47	59.77	0.00
1.2 Dead+1.0 Wind 0 deg - No	16718.21	-0.00	-12394.63	-1031308.50	78.95	-0.01
Ice						
0.9 Dead+1.0 Wind 0 deg - No	12538.65	-0.00	-12394.63	-1005100.56	57.66	-0.01
Ice						
1.2 Dead+1.0 Wind 30 deg - No	16718.20	6199.43	-10734.06	-893158.95	-515758.14	-59.90
Ice						
0.9 Dead+1.0 Wind 30 deg - No	12538.65	6199.43	-10734.06	-870449.61	-502673.60	-57.10
Ice						
1.2 Dead+1.0 Wind 60 deg - No	16718.20	10737.72	-6197.31	-515689.39	-893374.49	-103.77
Ice						
0.9 Dead+1.0 Wind 60 deg - No	12538.65	10737.72	-6197.31	-502570.48	-870696.19	-98.99
Ice						
1.2 Dead+1.0 Wind 90 deg - No	16718.21	12398.86	-0.00	-59.81	-1031575.43	-119.76
Ice						
0.9 Dead+1.0 Wind 90 deg - No	12538.65	12398.85	-0.00	-41.08	-1005397.75	-114.21
Ice						
1.2 Dead+1.0 Wind 120 deg -	16718.20	10737.72	6197.31	515568.48	-893372.20	-103.64
No Ice						
0.9 Dead+1.0 Wind 120 deg -	12538.65	10737.72	6197.31	502487.43	-870694.63	-98.82
No Ice						
1.2 Dead+1.0 Wind 150 deg -	16718.20	6199.43	10734.06	893035.39	-515755.85	-59.85
No Ice						
0.9 Dead+1.0 Wind 150 deg -	12538.65	6199.43	10734.06	870364.76	-502672.04	-57.10
No Ice						
1.2 Dead+1.0 Wind 180 deg -	16718.21	-0.00	12394.63	1031183.63	78.95	0.01
No Ice						
0.9 Dead+1.0 Wind 180 deg -	12538.65	-0.00	12394.63	1005014.80	57.66	0.01
No Ice						

Load Combination	Vertical $l b$	Shear $_{x}$ $l b$	Shear ${ }_{z}$ lb	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
1.2 Dead+1.0 Wind 210 deg -	16718.20	-6199.43	10734.06	893034.63	515913.30	59.87
No Ice						
0.9 Dead+1.0 Wind 210 deg -	12538.65	-6199.43	10734.06	870364.25	502787.07	57.12
No Ice						
1.2 Dead+1.0 Wind 240 deg -	16718.20	-10737.72	6197.31	515567.72	893528.76	103.65
No Ice						
0.9 Dead+1.0 Wind 240 deg -	12538.65	-10737.72	6197.31	502486.92	870809.07	98.83
No Ice						
1.2 Dead+1.0 Wind 270 deg -	16718.21	-12398.86	-0.00	-59.81	1031731.55	119.76
No Ice						
0.9 Dead+1.0 Wind 270 deg -	12538.65	-12398.85	-0.00	-41.08	1005511.90	114.21
No Ice						
1.2 Dead+1.0 Wind 300 deg -	16718.20	-10737.72	-6197.31	-515688.62	893531.05	103.76
No Ice						
0.9 Dead+1.0 Wind 300 deg -	12538.65	-10737.72	-6197.31	-502569.97	870810.63	98.99
No Ice						
1.2 Dead+1.0 Wind 330 deg -	16718.20	-6199.43	-10734.06	-893158.18	515915.59	59.88
No Ice						
0.9 Dead+1.0 Wind 330 deg -	12538.65	-6199.43	-10734.06	-870449.10	502788.63	57.09
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	33345.79	-0.00	-0.00	-23.26	337.99	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	33345.79	-0.00	-2254.12	-210555.67	432.90	0.01
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	33345.79	1127.37	-1952.13	-182358.57	-104836.37	-22.81
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	33345.79	1952.66	-1127.06	-105322.21	-181898.19	-39.54
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	33345.79	2254.74	-0.00	-88.47	-210104.19	-45.64
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	33345.79	1952.66	1127.06	105144.73	-181897.26	-39.51
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	33345.79	1127.37	1952.13	182180.03	-104835.44	-22.82
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	33345.79	-0.00	2254.12	210376.60	432.90	0.02
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	33345.79	-1127.37	1952.13	182179.81	105701.10	22.85
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	33345.79	-1952.66	1127.06	105144.52	182762.66	39.54
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	33345.79	-2254.74	-0.00	-88.47	210969.46	45.67
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	33345.79	-1952.66	-1127.06	-105321.98	182763.59	39.56
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	33345.79	-1127.37	-1952.13	-182358.34	105702.03	22.83
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	13931.84	-0.00	-3291.17	-270479.09	64.95	-0.00
Dead+Wind 30 deg - Service	13931.84	1646.15	-2850.24	-234248.56	-135203.26	-15.92
Dead+Wind 60 deg - Service	13931.84	2851.21	-1645.59	-135264.89	-234226.36	-27.58
Dead+Wind 90 deg - Service	13931.84	3292.30	-0.00	-50.72	-270471.24	-31.84
Dead+Wind 120 deg - Service	13931.84	2851.21	1645.59	135163.37	-234226.23	-27.56
Dead+Wind 150 deg - Service	13931.84	1646.15	2850.24	234146.89	-135203.13	-15.92
Dead+Wind 180 deg - Service	13931.84	-0.00	3291.17	270377.34	64.95	0.00
Dead+Wind 210 deg - Service	13931.84	-1646.15	2850.24	234146.85	135333.01	15.92
Dead+Wind 240 deg - Service	13931.84	-2851.21	1645.59	135163.33	234356.06	27.57
Dead+Wind 270 deg - Service	13931.84	-3292.30	-0.00	-50.72	270601.04	31.84
Dead+Wind 300 deg - Service	13931.84	-2851.21	-1645.59	-135264.85	234356.19	27.58
Dead+Wind 330 deg - Service	13931.84	-1646.15	-2850.24	-234248.52	135333.14	15.92

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	PZ	PX	PY	$P Z$	
Comb.	$l b$						
1	0.00	-13931.84	0.00	0.00	13931.84	0.00	0.000\%
2	0.00	-16718.20	-12394.63	0.00	16718.21	12394.63	0.000\%
3	0.00	-12538.65	-12394.63	0.00	12538.65	12394.63	0.000\%
4	6199.43	-16718.20	-10734.06	-6199.43	16718.20	10734.06	0.000\%
5	6199.43	-12538.65	-10734.06	-6199.43	12538.65	10734.06	0.000\%
6	10737.72	-16718.20	-6197.31	-10737.72	16718.20	6197.31	0.000\%
7	10737.72	-12538.65	-6197.31	-10737.72	12538.65	6197.31	0.000\%
8	12398.85	-16718.20	0.00	-12398.86	16718.21	0.00	0.000\%
9	12398.85	-12538.65	0.00	-12398.85	12538.65	0.00	0.000\%
10	10737.72	-16718.20	6197.31	-10737.72	16718.20	-6197.31	0.000\%
11	10737.72	-12538.65	6197.31	-10737.72	12538.65	-6197.31	0.000\%
12	6199.43	-16718.20	10734.06	-6199.43	16718.20	-10734.06	0.000\%
13	6199.43	-12538.65	10734.06	-6199.43	12538.65	-10734.06	0.000\%
14	0.00	-16718.20	12394.63	0.00	16718.21	-12394.63	0.000\%
15	0.00	-12538.65	12394.63	0.00	12538.65	-12394.63	0.000\%
16	-6199.43	-16718.20	10734.06	6199.43	16718.20	-10734.06	0.000\%
17	-6199.43	-12538.65	10734.06	6199.43	12538.65	-10734.06	0.000\%
18	-10737.72	-16718.20	6197.31	10737.72	16718.20	-6197.31	0.000\%
19	-10737.72	-12538.65	6197.31	10737.72	12538.65	-6197.31	0.000\%
20	-12398.85	-16718.20	0.00	12398.86	16718.21	0.00	0.000\%
21	-12398.85	-12538.65	0.00	12398.85	12538.65	0.00	0.000\%
22	-10737.72	-16718.20	-6197.31	10737.72	16718.20	6197.31	0.000\%
23	-10737.72	-12538.65	-6197.31	10737.72	12538.65	6197.31	0.000\%
24	-6199.43	-16718.20	-10734.06	6199.43	16718.20	10734.06	0.000\%
25	-6199.43	-12538.65	-10734.06	6199.43	12538.65	10734.06	0.000\%
26	0.00	-33345.79	0.00	0.00	33345.79	0.00	0.000\%
27	0.00	-33345.79	-2253.92	0.00	33345.79	2254.12	0.001\%
28	1127.27	-33345.79	-1951.95	-1127.37	33345.79	1952.13	0.001\%
29	1952.49	-33345.79	-1126.96	-1952.66	33345.79	1127.06	0.001\%
30	2254.54	-33345.79	0.00	-2254.74	33345.79	0.00	0.001\%
31	1952.49	-33345.79	1126.96	-1952.66	33345.79	-1127.06	0.001\%
32	1127.27	-33345.79	1951.95	-1127.37	33345.79	-1952.13	0.001\%
33	0.00	-33345.79	2253.92	0.00	33345.79	-2254.12	0.001\%
34	-1127.27	-33345.79	1951.95	1127.37	33345.79	-1952.13	0.001\%
35	-1952.49	-33345.79	1126.96	1952.66	33345.79	-1127.06	0.001\%
36	-2254.54	-33345.79	0.00	2254.74	33345.79	0.00	0.001\%
37	-1952.49	-33345.79	-1126.96	1952.66	33345.79	1127.06	0.001\%
38	-1127.27	-33345.79	-1951.95	1127.37	33345.79	1952.13	0.001\%
39	0.00	-13931.84	-3291.17	0.00	13931.84	3291.17	0.000\%
40	1646.15	-13931.84	-2850.24	-1646.15	13931.84	2850.24	0.000\%
41	2851.21	-13931.84	-1645.59	-2851.21	13931.84	1645.59	0.000\%
42	3292.30	-13931.84	0.00	-3292.30	13931.84	0.00	0.000\%
43	2851.21	-13931.84	1645.59	-2851.21	13931.84	-1645.59	0.000\%
44	1646.15	-13931.84	2850.24	-1646.15	13931.84	-2850.24	0.000\%
45	0.00	-13931.84	3291.17	0.00	13931.84	-3291.17	0.000\%
46	-1646.15	-13931.84	2850.24	1646.15	13931.84	-2850.24	0.000\%
47	-2851.21	-13931.84	1645.59	2851.21	13931.84	-1645.59	0.000\%
48	-3292.30	-13931.84	0.00	3292.30	13931.84	0.00	0.000\%
49	-2851.21	-13931.84	-1645.59	2851.21	13931.84	1645.59	0.000\%
50	-1646.15	-13931.84	-2850.24	1646.15	13931.84	2850.24	0.000\%

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00024884
3	Yes	5	0.00000001	0.00002553
4	Yes	7	0.00000001	0.00018304
5	Yes	6	0.00000001	0.00051416
6	Yes	7	0.00000001	0.00018415
7	Yes	6	0.00000001	0.00051743
8	Yes	5	0.00000001	0.00027112
9	Yes	5	0.00000001	0.00005397
10	Yes	7	0.00000001	0.00018261
11	Yes	6	0.00000001	0.00051301
12	Yes	7	0.00000001	0.00018370
13	Yes	6	0.00000001	0.00051623
14	Yes	5	0.00000001	0.00024864
15	Yes	5	0.00000001	0.00002551
16	Yes	7	0.00000001	0.00018373
17	Yes	6	0.00000001	0.00051630
18	Yes	7	0.00000001	0.00018264
19	Yes	6	0.00000001	0.00051307
20	Yes	5	0.00000001	0.00027115
21	Yes	5	0.00000001	0.00005397
22	Yes	7	0.00000001	0.00018418
23	Yes	6	0.00000001	0.00051749
24	Yes	7	0.00000001	0.00018307
25	Yes	6	0.00000001	0.00051423
26	Yes	4	0.00000001	0.00000001
27	Yes	6	0.00047952	0.00029723
28	Yes	6	0.00047793	0.00056802
29	Yes	6	0.00047783	0.00057495
30	Yes	6	0.00047930	0.00029639
31	Yes	6	0.00047761	0.00056350
32	Yes	6	0.00047752	0.00056921
33	Yes	6	0.00047906	0.00029589
34	Yes	6	0.00047750	0.00057356
35	Yes	6	0.00047759	0.00056690
36	Yes	6	0.00047928	0.00029789
37	Yes	6	0.00047781	0.00057849
38	Yes	6	0.00047790	0.00057242
39	Yes	5	0.00000001	0.00001513
40	Yes	5	0.00000001	0.00035775
41	Yes	5	0.00000001	0.00036339
42	Yes	5	0.00000001	0.00001729
43	Yes	5	0.00000001	0.00035509
44	Yes	5	0.00000001	0.00036045
45	Yes	5	0.00000001	0.00001509
46	Yes	5	0.00000001	0.00036089
47	Yes	5	0.00000001	0.00035545
48	Yes	5	0.00000001	0.00001730
49	Yes	5	0.00000001	0.00036376
50	Yes	5	0.00000001	0.00035819

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load	Tilt	Twist
	ft	28.384	Comb.	\circ	\circ
L1	$97.5-50.79$		49	2.5211	0.0012

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	Deflection	Load	\circ	\circ	
	$f t$	in	Comb.	\circ	\circ
L2	$54.21-1.5$	8.739	48	1.5431	0.0004

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature $f t$
97.50	Lighting Rod 5/8" x 7^{\prime}	49	28.384	2.5211	0.0012	11573
90.00	RDIDC-9181-PF-48	49	24.508	2.3626	0.0011	7715

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz. Noflection	Gov. Load	Tilt	Twist
	in	It	Comb.	\circ	\circ
L1	$97.5-50.79$	108.284	20	9.6467	0.0047
L2	$54.21-1.5$	33.365	20	5.9004	0.0013

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature $f t$
97.50	Lighting Rod 5/8' x 7^{\prime}	20	108.284	9.6467	0.0047	3152
90.00	RDIDC-9181-PF-48	20	93.504	9.0392	0.0040	2100

Compression Checks

Pole Design Data									
Section No.	Elevation	Size	L	L_{u}	Kl/r		P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		ft	ft		$i n^{2}$	$l b$	$l b$	ϕP_{n}
L1	97.5-95.2216	TP23.05x16x0.1875	46.71	0.00	0.0	9.6151	-4944.00	562482.00	0.009
	$\begin{gathered} 95.2216- \\ 92.9432 \end{gathered}$					9.8197	-5037.11	574454.00	0.009
	$\begin{gathered} 92.9432- \\ 90.6647 \end{gathered}$					10.0244	-5134.05	586426.00	0.009
	90.6647 -					10.2290	-8173.79	598398.00	0.014
	$\begin{gathered} 88.3863 \\ 88.3863 \\ 86.1079 \end{gathered}$					10.4337	-8286.25	610371.00	0.014

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		in ${ }^{2}$	$l b$	$l b$	ϕP_{n}
11.8768 -						22.6880	-15683.60	1327250.00	0.012
9.28263									
9.28263 -						22.9942	-16014.10	1345160.00	0.012
6.68842									
6.68842 -						23.3004	-16348.50	1363070.00	0.012
4.09421									
4.09421-1.5						23.6066	-16686.70	1380990.00	0.012

Pole Bending Design Data

Section	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	Ratio No.	$f t$		$M_{u x}$	$M_{u y}$

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & 20 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Projec	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$M_{u y}$	$\phi M_{n y}$	Ratio $M_{u y}$
$f t$			$l b-f t$	$l b-f t$	$\phi M_{n x}$	$l b-f t$	$l b-f t$	$\phi M_{n y}$
	45.6016 -		535285.83	671944.17	0.797	0.00	671944.17	0.000
43.0074								
	43.0074 -		564986.67	692877.50	0.815	0.00	692877.50	0.000
40.4132								
	40.4132 -		594898.33	712718.33	0.835	0.00	712718.33	0.000
37.8189								
	37.8189 -		625013.33	732743.33	0.853	0.00	732743.33	0.000
35.2247								
	35.2247 -		655323.33	752950.00	0.870	0.00	752950.00	0.000
32.6305								
	32.6305 -		685820.83	773332.50	0.887	0.00	773332.50	0.000
30.0363								
	30.0363 -		716499.17	793888.33	0.903	0.00	793888.33	0.000
	27.4421							
	27.4421 -		747351.67	814610.83	0.917	0.00	814610.83	0.000
24.8479								
	24.8479 -		778370.83	835500.00	0.932	0.00	835500.00	0.000
22.2537								
	22.2537 -		809550.00	856541.67	0.945	0.00	856541.67	0.000
19.6595								
	19.6595 -		840883.33	877750.00	0.958	0.00	877750.00	0.000
17.0653 (${ }^{\text {c }}$								
	17.0653 -		872366.67	899100.00	0.970	0.00	899100.00	0.000
	14.4711							
	14.4711 -		903983.33	920600.00	0.982	0.00	920600.00	0.000
11.8768 (${ }^{\text {c }}$								
	11.8768 -		935733.33	942241.67	0.993	0.00	942241.67	0.000
9.28263								
	9.28263 -		967616.67	964025.00	1.004	0.00	964025.00	0.000
	6.68842 -		999616.67	985941.67	1.014	0.00	985941.67	0.000
4.09421								
	4.09421-1.5		1031733.33	1007983.33	1.024	0.00	1007983.33	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	Actual T_{u}	ϕT_{n}	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$
$f t$			$l b$	$l b$	ϕV_{n}	$l b-f t$	$l b-f t$	ϕT_{n}
L1	97.5-95.2216	TP23.05x16x0.1875	5163.21	168744.00	0.031	0.00	238755.83	0.000
	$\begin{gathered} 95.2216- \\ 92.9432 \end{gathered}$		5270.03	172336.00	0.031	0.00	249027.50	0.000
	$\begin{gathered} 92.9432- \\ 90.6647 \end{gathered}$		5376.49	175928.00	0.031	0.00	259515.83	0.000
	$\begin{gathered} 90.6647- \\ 88.3863 \end{gathered}$		9724.18	179520.00	0.054	0.01	270220.00	0.000
	$\begin{gathered} 88.3863- \\ 86.1079 \end{gathered}$		9824.31	183111.00	0.054	0.01	281140.83	0.000
	$\begin{gathered} 86.1079- \\ 83.8295 \end{gathered}$		9923.03	186703.00	0.053	61.24	292278.33	0.000
	$\begin{gathered} 83.8295- \\ 81.5511 \end{gathered}$		10017.20	190295.00	0.053	61.22	303631.67	0.000
	$\begin{gathered} 81.5511- \\ 79.2726 \end{gathered}$		10108.80	193886.00	0.052	61.19	315201.67	0.000
	$\begin{gathered} 79.2726- \\ 76.9942 \end{gathered}$		10197.90	197478.00	0.052	61.15	326988.33	0.000

Pole Interaction Design Data

Section No.	Elevation	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$	Comb. Stress	Allow. Stress	Criteria
	$f t$	ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L1	97.5-95.2216	0.009	0.050	0.000	0.031	0.000	0.060	1.050	4.8.2
	$\begin{gathered} 95.2216- \\ 92.9432 \end{gathered}$	0.009	0.096	0.000	0.031	0.000	0.106	1.050	4.8.2
	$\begin{gathered} 92.9432- \\ 90.6647 \end{gathered}$	0.009	0.140	0.000	0.031	0.000	$\begin{gathered} 0.149 \\ \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 90.6647- \\ 88.3863 \end{gathered}$	0.014	0.206	0.000	0.054	0.000	0.222	1.050	4.8.2
	$\begin{gathered} 88.3863- \\ 86.1079 \end{gathered}$	0.014	0.278	0.000	0.054	0.000	$\begin{gathered} 0.294 \\ y \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 86.1079- \\ 83.8295 \end{gathered}$	0.014	0.345	0.000	0.053	0.000	${ }^{0.361}$	1.050	4.8.2
	$\begin{gathered} 83.8295- \\ 81.5511 \end{gathered}$	0.013	0.409	0.000	0.053	0.000	0.425	1.050	4.8.2
	$\begin{gathered} 81.5511- \\ 79.2726 \end{gathered}$	0.013	0.470	0.000	0.052	0.000	0.486	1.050	4.8.2
	$\begin{gathered} 79.2726- \\ 76.9942 \end{gathered}$	0.013	0.527	0.000	0.052	0.000	0.543	1.050	4.8.2
	$\begin{gathered} 76.9942- \\ 74.7158 \end{gathered}$	0.013	0.581	0.000	0.051	0.000	0.597	1.050	4.8.2
	$\begin{gathered} 74.7158- \\ 72.4374 \end{gathered}$	0.013	0.633	0.000	0.051	0.000	$\begin{gathered} 0.649 \\ \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 72.4374- \\ 70.1589 \end{gathered}$	0.013	0.681	0.000	0.050	0.000	0.697	1.050	4.8.2
	$\begin{gathered} 70.1589 \\ 67.8805 \end{gathered}$	0.013	0.728	0.000	0.050	0.000	0.743	1.050	4.8.2
	$\begin{gathered} 67.8805- \\ 65.6021 \end{gathered}$	0.013	0.771	0.000	0.049	0.000	0.787	1.050	4.8 .2
	$\begin{gathered} 65.6021- \\ 63.3237 \end{gathered}$	0.013	0.813	0.000	0.049	0.000	0.829	1.050	4.8.2
	$\begin{gathered} 63.3237- \\ 61.0453 \end{gathered}$	0.013	0.853	0.000	0.048	0.000	$\begin{gathered} 0.869 \\ \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 61.0453- \\ 58.7668 \end{gathered}$	0.013	0.891	0.000	0.048	0.000	0.906	1.050	4.8 .2
	$\begin{gathered} 58.7668- \\ 56.4884 \end{gathered}$	0.013	0.927	0.000	0.048	0.000	$\begin{gathered} 0.942 \\ \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 56.4884- \\ 54.21 \end{gathered}$	0.013	0.961	0.000	0.047	0.000	0.977	1.050	4.8.2
	54.21-50.79	0.006	0.448	0.000	0.021	0.000	0.454	1.050	4.8.2
L2	54.21-50.79	0.006	0.410	0.000	0.020	0.000	0.417	1.050	4.8.2
	$\begin{gathered} 50.79- \\ 48.1958 \end{gathered}$	0.011	0.758	0.000	0.035	0.000	0.770	1.050	4.8.2
	$\begin{gathered} 48.1958- \\ 45.6016 \end{gathered}$	0.011	0.778	0.000	0.035	0.000	0.790	1.050	4.8.2

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & 23 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 19:35:07 02/23/21 } \end{array}$
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section No.	Elevation	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$	Ratio $M_{u x}$	Ratio $M_{u y}$	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$	Comb. Stress	Allow. Stress	Criteria
	$f t$	ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
	$\begin{gathered} 45.6016- \\ 43.0074 \end{gathered}$	0.011	0.797	0.000	0.035	0.000	$\begin{gathered} 0.809 \\ \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 43.0074- \\ 40.4132 \end{gathered}$	0.011	0.815	0.000	0.035	0.000		1.050	$4.8 .2$
	$\begin{gathered} 40.4132- \\ 37.8189 \end{gathered}$	0.011	0.835	0.000	0.034	0.000		1.050	4.8.2
	$\begin{gathered} 37.8189- \\ 35.2247 \end{gathered}$	0.011	0.853	0.000	0.034	0.000	0.865	1.050	4.8.2
	$\begin{gathered} 35.2247- \\ 32.6305 \end{gathered}$	0.011	0.870	0.000	0.034	0.000	0.883	1.050	4.8.2
	$\begin{gathered} 32.6305- \\ 30.0363 \end{gathered}$	0.011	0.887	0.000	0.033	0.000		1.050	4.8.2
	$\begin{gathered} 30.0363- \\ 27.4421 \end{gathered}$	0.011	0.903	0.000	0.033	0.000	0.915	1.050	4.8.2
	$\begin{gathered} 27.4421- \\ 24.8479 \end{gathered}$	0.011	0.917	0.000	0.033	0.000	0.930	1.050	4.8.2
	$\begin{gathered} 24.8479- \\ 22.2537 \end{gathered}$	0.011	0.932	0.000	0.032	0.000	0.944	1.050	4.8.2
	$\begin{gathered} 22.2537- \\ 19.6595 \end{gathered}$	0.011	0.945	0.000	0.032	0.000	0.958	1.050	4.8.2
	$\begin{gathered} 19.6595- \\ 17.0653 \end{gathered}$	0.012	0.958	0.000	0.032	0.000	0.971	1.050	4.8.2
	$\begin{gathered} 17.0653- \\ 14.4711 \end{gathered}$	0.012	0.970	0.000	0.031	0.000	0.983	1.050	4.8.2
	$\begin{gathered} 14.4711- \\ 11.8768 \end{gathered}$	0.012	0.982	0.000	0.031	0.000	0.995	1.050	4.8.2
	$\begin{gathered} 11.8768- \\ 9.28263 \end{gathered}$	0.012	0.993	0.000	0.031	0.000	1.006	1.050	4.8.2
	$\begin{gathered} 9.28263- \\ 6.68842 \end{gathered}$	0.012	1.004	0.000	0.031	0.000	1.017	1.050	4.8.2
	$\begin{gathered} 6.68842- \\ 4.09421 \end{gathered}$	0.012	1.014	0.000	0.030	0.000	1.027	1.050	4.8.2
	4.09421-1.5	0.012	1.024	0.000	0.030	0.000	1.037	1.050	4.8.2

Section Capacity Table

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} \curvearrowleft P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
L1	97.5-50.79	Pole	TP23.05x16x0.1875	1	-10483.10	816882.11	93.0	Pass
L2	50.79-1.5	Pole	TP30x22.1588x0.25	2	-16686.70	1450039.43	98.7	Pass
						Pole (L2) RATING =	$\begin{gathered} \text { Summary } \\ 98.7 \\ \mathbf{9 8 . 7} \end{gathered}$	Pass Pass

Program Version 8.0.7.5-8/3/2020 File:C:/Users/Ravi Raja/Downloads/2101548 - BOE - Richard D Riddle School/Tnx/SGS_ 2101548 _VB Site_US-MD-5072_02-18-2021.eri

Monopole Base Plate Connection

Site Info	
SGS \#	2101548
Site Name	E
Order \#	

Analysis Considerations	
TIA-222 Revision	H
Grout Considered:	No
$\mathrm{I}_{\text {ar }}$ (in)	2

$|$| Applied Loads | |
| ---: | :---: |
| Moment (kip-ft) | 1031.73 |
| Axial Force (kips) | 16.69 |
| Shear Force (kips) | |
| *TIA-222-H Section 15.5 Applied | |

Connection Properties

Anchor Rod Data
(6) 2-1/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 38" BC

Base Plate Data
44 " OD x 1.75" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

Stiffener Data
N/A

Pole Data
$30 " \times 0.25$ " 18 -sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Connection Properties	Analysis Results		
Anchor Rod Data	Anchor Rod Summary		(units of kips, kip-in)
(6) 2-1/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 38" BC	Pu_c = 219.68	¢Pn_c = 268.39	Stress Rating
	$\mathrm{Vu}=2.07$	$\phi V \mathrm{n}=120.77$	78.0\%
Base Plate Data	$\mathrm{Mu}=\mathrm{n} / \mathrm{a}$	$\phi M n=n / a$	Pass
44" OD x 1.75" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)			
	Base Plate Summary		
Stiffener Data	Max Stress (ksi):	49.21	(Flexural)
N/A	Allowable Stress (ksi):	54	
	Stress Rating:	86.8\%	Pass
Pole Data			
30 " $\times 0.25$ " 18 -sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)			

Drilled Pier Foundation

Material Properties		
Concrete Strength, f'c:	4	ksi
Rebar Strength, Fy:	60	ksi
Tie Yield Strength, Fyt:	40	ksi

Rebar \& Pier Options
Embedded Pole Inputs Belled Pier Inputs

Analysis Results		
Soil Lateral Check	Compression	Uplift
$\mathrm{D}_{\mathrm{v}=0}$ (ft from TOC)	6.36	-
Soil Safety Factor	3.23	-
Max Moment (kip-ft)	1097.57	-
Rating*	39.2\%	-
Soil Vertical Check	Compression	Uplift
Skin Friction (kips)	190.25	-
End Bearing (kips)	132.54	-
Weight of Concrete (kips)	74.81	-
Total Capacity (kips)	322.79	-
Axial (kips)	91.50	-
Rating*	27.0\%	-
Reinforced Concrete Flexure	Compression	Uplift
Critical Depth (ft from TOC)	6.18	-
Critical Moment (kip-ft)	1097.46	-
Critical Moment Capacity	1671.42	-
Rating*	62.5\%	-
Reinforced Concrete Shear	Compression	Uplift
Critical Depth (ft from TOC)	16.43	-
Critical Shear (kip)	157.32	-
Critical Shear Capacity	334.56	-
Rating*	44.8\%	-

Check Limitation

Check Limitation			
Apply TIA-222-H Section 15.5:	\square		
N/A			\square
Shear Design Options			
Check Shear along Depth of Pier:	\square		
Utilize Shear-Friction Methodology:	\square		
Override Critical Depth:	\square		
Go to Soil Calculations			

Soil Interaction Rating*	$\mathbf{3 9 . 2 \%}$
Structural Foundation Rating*	$\mathbf{6 2 . 5 \%}$
*Rating per TIA-222-H Section 15.5	

Soil Profile														
Groundwater Depth		19	\# of Layers											
Layer	Top (ft)	Bottom (ft)	Thickness (ft)	$\begin{aligned} & \mathbf{V}_{\text {soil }} \\ & (\mathrm{pcf}) \end{aligned}$	$\boldsymbol{Y}_{\text {concrete }}$ (pcf)	Cohesion (ksf)	Angle of Friction (degrees)	Calculated Ultimate Skin Friction Comp (ksf)	Calculated Ultimate Skin Friction Uplift (ksf)	Ultimate Skin Friction Comp Override (ksf)	Ultimate Skin Friction Uplift Override (ksf)	Ult. Gross Bearing Capacity (ksf)	SPT Blow Count	Soil Type
1	0	3	3	110	150		0	0.000	0.000					Cohesionless
2	3	8	5	110	150		25	0.477	0.477				10	Cohesionless
3	8	19	11	115	150		30	1.012	1.012				10	Cohesionless
4	19	21	2	53	87.6		30	1.313	1.313			9	10	Cohesionless

ASCE 7 Hazards Report

Address:

No Address at This Location
$\begin{array}{lll}\text { Standard: } & \text { ASCE/SEI 7-16 } & \text { Elevation: } \\ \text { Risk Category: } & \text { II } & \text { Latitude: } 39.47 \mathrm{ft} \text { (NAVD 88) } \\ \text { Soil Class: } & \text { D - Stiff Soil } & \text { Longitude: -77.066492 }\end{array}$

Wind

Results:

Wind Speed:	113 Vmph
10-year MRI	75 Vmph
25 -year MRI	84 Vmph
50 -year MRI	89 Vmph
100 -year MRI	95 Vmph

Data Source:
Date Accessed:

ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2 Thu Feb 182021

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

AMERICAN SOCIETY OF CIVIL ENGINEERS

Seismic

Site Soil Class:
D - Stiff Soil

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.134	$\mathrm{~S}_{\mathrm{D} 1}:$	0.069
$\mathrm{~S}_{1}:$	0.043	$\mathrm{~T}_{\mathrm{L}}:$	8
$\mathrm{~F}_{\mathrm{a}}:$	1.6	$\mathrm{PGA}:$	0.07
$\mathrm{~F}_{\mathrm{V}}:$	2.4	$\mathrm{PGA}_{\mathrm{M}}:$	0.111
$\mathrm{~S}_{\mathrm{MS}}:$	0.215	$\mathrm{~F}_{\mathrm{PGA}}:$	1.6
$\mathrm{~S}_{\mathrm{M} 1}:$	0.104	$\mathrm{I}_{\mathrm{e}}:$	1
$\mathrm{~S}_{\mathrm{DS}}:$	0.143	$\mathrm{C}_{\mathrm{V}}:$	0.7

Seismic Design Category
B

Data Accessed:
Date Source:

Thu Feb 182021
USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIVIL ENGINEERS
Ice

Results:

Ice Thickness:
Concurrent Temperature:
Gust Speed:
Data Source:
Date Accessed:
1.00 in.

15 F
40 mph
Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Thu Feb 182021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 500 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Attachment 2:
 Collocation Application

COLOCATION APPLICATION
US-MD-5072
Vertical Bridge REIT, LLC. 750 Park of Commerce Drive

SUMMARY

PRIMARY INFO

Application \#: C-103052

Application Version: 2 (Submitted: 2/12/2021 12:11:00 PM)
Application Type: Broadband
Application Name: DCWDC00428A
Lease Type: New Lease
Description:
Installing (6) new antennas, (12) RRUs (1) OVP, and (1) Hybrid Cable - 10×15 ground space needed for platform and shelter

VERTICAL BRIDGE SITE INFO

VB Site \#:

VB Site Name:
US-MD-5072

Latitude: $\quad 39.05946111$
Longitude: $\quad-77.06649167$
Structure Type: Monopole
Structure Height: 100.0000
Site Address: 12501-A Dalewood Drive -
Silver Spring, MD 20906

VERTICAL BRIDGE DEAL TEAM

RLM: Floyd Jenkins FJenkins@verticalbridge.com (301) 667-0069

RLS: Sam Bowden
SBowden@verticalbridge.com

ROM:Jeremy Potts
JPotts@verticalbridge.com (502) 295-7552

TENANT LEGAL INFO

Tenant Legal Name:	DISH Wireless L.L.C.
State of Registration:	Colorado
Type of Entity:	LLC
Carrier NOC \#:	8666246874
Tenant Site \#:	DCWDC00428A
Tenant Site Name:	DCWDC00428A

APPLICANT

Name:	Cherisa Small
Address	6700 Alexander Bell Drive
	Suite 200
	Columbia, MD 21046
Phone Number::	$(301) 801-9035$
Email Address:	cherisa.small@dish.com

FINAL LEASED RIGHTS CONFIGURATION TOTALS

This is a summary of your remaining existing equipment plus the new equipment.

FINAL EQUIPMENT

Qty	Equipment Type
1	Junction Box
6	Panel
12	RRU

FINAL LINES

Qty	Line Type
1	Hybrid

FREQUENCY \& TECHNOLOGY INFO

Type of Technology:	Broadband Wireless
Is TX Frequency Licensed:	Yes
TX Frequency:	$722-728\|642-652\| 2180-2200 \mid 1995-2020$
Is RX Frequency Licensed:	Yes
RX Frequency:	

MOUNT \& STRUCTURAL ANALYSIS

MOUNT ANALYSIS

Provided by Tenant: No
To Be Run by VB: No
Include Mount Mapping: No

STRUCTURAL HARD COPIES

Required: No

Number of Hard Copies

CONTACTS

INVOICE CONTACT

Attention To	Name	Address	Phone Number 1	Phone Number 2	Email 1	Email 2
	Accounts Payable	P.O. Box 6649 Englewood, CO 80112	$(555) 555-5555$		WirelessAPInvoic es@dish.com	

PO CONTACT

Name	Phone	Email
Accounts Payable	$(555) 555-5555$	WirelessAPInvoices@dish.com

LEASING CONTACT

Name	Phone Number	Email
Cherisa Small	$(301) 801-9035$	cherisa.small@dish.com

NOTICE CONTACT			
Notice To	Attention To	Address	
DISH Wireless L.L.C.		Lease Administration	9601 South Meridian Blvd Englewood, CO 80112

COPY NOTICE CONTACT			
Notice To	Attention To	Address	
DISH Wireless, L.L.C		Attn: Office of the General Counsel	9601 South Meridian Blva. Englewood, CO 80112

RF CONTACT		
Name	Phone Number	Email
Morrie Kebbeh	$(813) 704-7429$	morrie.kebbeh@dish.com

TENANT CONSTRUCTION MANAGER CONTACT

Name	Phone Number	Email
Troy James	$(443) 752-7427$	troy.james@dish.com

EMERGENCY CONTACT

Name	Phone Number	Email
DISH WIRELESS NOC	$(866) 624-6874$	noc.alerts@dish.com

LINE \& EQUIPMENT

NEW LINE(S)

Qty	Line Type	Line Size(in.)	Line Location	Comments
1	Hybrid	1.6	Exterior	

NEW EQUIPMENT										
Qty	Equipment Type	RAD Height	Mount (H')	Mount Type	Manufacturer	Model Number	Dimensions (H"xW"xD")	Weight (Lbs.)	Azimuth	Comments
1	Junction Box	90.00	90.00	Platform	Raycap	RDIDC-9181-PF -48	$\begin{aligned} & 8.00 \times 14.00 \\ & \times 16.00 \end{aligned}$	21.85	0	
2	RRU	90.00	90.00	Platform	Fujitsu	$\begin{aligned} & \text { TA0802 } \\ & \text { 5-B604 } \end{aligned}$	$\begin{aligned} & 7.87 \times 14.96 \\ & \times 15.75 \end{aligned}$	63.93	120	(1) Installed RRU; (1) Reserved RRU
2	RRU	90.00	90.00	Platform	Fujitsu	$\begin{aligned} & \hline \text { TA0802 } \\ & 5-\mathrm{B} 604 \end{aligned}$	$\begin{aligned} & 7.87 \times 14.96 \\ & \times 15.75 \end{aligned}$	63.93	240	(1) Installed RRU; (1) Reserved RRU
2	RRU	90.00	90.00	Platform	Fujitsu	$\begin{aligned} & \hline \text { TA0802 } \\ & 5-\mathrm{B} 605 \end{aligned}$	$\begin{aligned} & 15.75 \times \\ & 14.96 \times 9.06 \end{aligned}$	74.95	0	(1) Installed RRU; (1) Reserved RRU
2	Panel	90.00	90.00	Platform	JMA	MX08F RO66520_VOF	$\begin{aligned} & \hline 72.00 \times \\ & 20.00 \times 8.00 \end{aligned}$	54.00	240	(1) Antenna Installed; (1) Antenna Reserved
2	Panel	90.00	90.00	Platform	JMA	MX08F RO66520_VOF	$\begin{aligned} & 72.00 \times \\ & 20.00 \times 8.00 \end{aligned}$	54.00	0	(1) Antenna Installed; (1) Antenna Reserved

COLOCATION APPLICATION
Vertical Bridge REIT, LLC.
US-MD-5072
750 Park of Commerce Drive
Version 2
Suite 200
DISH Wireless L.L.C.
Boca Raton, FL 33487

2	RRU	90.00	90.00	Platform	Fujitsu	TA0802 $5-B 605$	$15.75 \times$ 14.96×9.06	74.95	240 (1) Installed RRU; (1) Reserved RRU		
2	RRU	90.00	90.00	Platform	Fujitsu	TA0802 $5-B 605$	$15.75 \times$ 14.96×9.06	74.95	120 (1) Installed RRU; (1) Reserved RRU 2	RRU	90.00

NEW EQUIPMENT CABINET(S)

Quantity of Cabinets	Cabinet Dimensions (H x W x D)	Manufacturer	Comments
1	$74.00 \times 32.00 \times 32.10$	Charles	

ADDITIONAL SITE REQUIREMENTS

GROUND \& INTERIOR SPACE REQUIREMENTS

Requirement Type	Total Lease Area (L x W)	Cabinet Required	Cabinet Area (L x W)	Shelter Required	Shelter Pad (L x W)	Comments
New	10.00×15.00	Yes	3.00×3.00		x	

GENERATOR REQUIREMENTS

Requirement Type	Fuel Type	Kilowatt Size	Pad Dimensions $(\mathrm{L} \times$ D)	Generator Manufacturer	Fuel Tank Manufacturer	Comments
No Changes			x			

AC POWER REQUIREMENTS

Meter Type	Additional Details	Comments
New Tenant Meter		

BACKHAUL REQUIREMENTS

Requirement Type	Cable Type	Number Of Points Of Entry	Riser Size (Inches)	Comments
Not Required				

SUPPLEMENT TO THE MASTER LEASE AGREEMENT (Pursuant and subject to the MLA)

THIS SUPPLEMENT TO THE MASTER LEASE AGREEMENT ("SLA") is entered into as of
\qquad ("Effective Date"), by and between VB-S1 Assets, LLC, a Delaware limited liability company ("Lessor"), whose address is 750 Park of Commerce Drive, Suite 200, Boca Raton, Florida 33487, and DISH Wireless L.L.C., a Colorado limited liability company ("Lessee"), whose address is 9601 South Meridian Blvd., Englewood, Colorado, 80112.

BACKGROUND

WHEREAS, Lessor's Affiliate, Vertical Bridge REIT, LLC, and Lessee have entered into that certain MLA dated January 29, 2021 (the "MLA"). Such MLA provides that Lessor or its Affiliates and Lessee will enter into separate SLAs on a Site-by-Site basis as mutually agreed upon by the Parties, pursuant to which Lessor or its Affiliates will lease to Lessee certain available space at a Site.

AGREEMENT

NOW, THEREFORE, for good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, and intending to be legally bound hereby, the Parties agree as follows:

1. Site Information. The Leased Property, as more particularly described in Section 6 hereof, means:
a. Lessee Site ID: DCWDC00428A
b. Lessor Site ID: US-MD-5072 / BOE- Richard D Riddle School
c. Address and/or location of the Site: 12501-A Dalewood Drive, Silver Spring, MD 20906
d. Site coordinates (NAD 83):
i. Latitude: 39.05946111
ii. Longitude: -77.06649167
e. Antenna Space centerline height: 90^{\prime}
f. Ground Space dimensions: $10^{\prime} \times 15^{\prime}$
2. Rent; Term.
a. Rent.
i. Commencing on the SLA Rent Commencement Date, the Basic Rent for this SLA shall be One Thousand Two Hundred Fifty and 00/100 dollars ($\$ 1,250.00$) per month, to be paid in accordance with the terms set forth in Section 4 of the MLA.
ii. Additional Rent, if any, shall be paid in accordance with the terms set forth in Section 4 of the MLA, unless otherwise set forth below, in the amount of: Not Applicable
iii. Rent shall be paid to the following address (or via electronic funds transfer as agreed to by the Parties in Section 4.4 of the MLA):

VB-S1 Issuer, LLC
P.O. Box 743906

Atlanta, GA 30374-3906

For Overnight mail:
Bank of America Lockbox Services
Lockbox \# 743906
6000 Feldwood Road
College Park, GA 30349
b. Term. The term of this SLA shall be as set forth in Section 3 of the MLA, unless set forth herein as follows: Not Applicable.
3. Non-Standard Terms. The Parties acknowledge and agree that the following conditions exist at the Site: (Check all that apply)
$\square \quad$ There are no electrical utilities installed at the Site as of the Effective Date (i.e., neither Lessor nor any Co-User at the Site have electrical utilities installed).

- The Leased Property is located, in whole or in part, on land which is owned, operated or controlled by a Governmental Authority (e.g. Bureau of Land Management or Bureau of Indian Affairs).
\square The Structure on the Site is AM Detuned.
\square Tower Modifications are required prior to the commencement of Lessee's initial Installation at the Site.
\square Ground Space at the Site is not included in the legal interest conveyed to Lessee pursuant to this SLA.

4. Key Prime Agreement Terms.
a. Current term expiration date of the Prime Agreement / final term expiration date of the Prime Agreement: 08/22/2025 / 08/22/2025.
b. Does the Prime Lessor have the right to not renew or terminate the Prime Agreement at the end of the current term or any remaining renewal terms: Not Applicable.
c. Special access rules under the Prime Agreement: See Sections 8, 10, and 17 of the Prime Agreement. Additionally, Prime Lessor approval of Lessee's schedule for performing work at the Site must be provided prior to entry onto the Site.
5. Special Provisions. N/A
6. Site Address and Legal Description of Site. Lessor hereby leases to Lessee, and Lessee leases from Lessor, as applicable, the Site, as more particularly described in Section 1 hereof, and which is comprised of the space on the Structure, Easements and Ground Space on the Parcel at heights and locations as more particularly set forth on Schedule A-1 (Collocation Application), Schedule A-2 (Structure Elevation and Site Plan), and Schedule A-4 (Legal Description of Parcel and/or Survey) (together, as applicable, the "Leased Property"), each of which are attached hereto and incorporated herein.
7. Frequencies. As of the Effective Date, Lessee's initial Installation will use those certain frequencies, in pre-approved transmit power, as set forth on Schedule A-1 (Collocation Application), which is attached hereto and incorporated herein by this reference.
8. MLA; Defined Terms; Incorporation of Background; Prime Agreement. This SLA is entered into pursuant to the MLA. All terms and conditions of the MLA are incorporated herein by this reference and made a part hereof without the necessity of repeating such terms and conditions or attaching the MLA. By executing and delivering this SLA, the Parties hereby agree to be bound by all terms and conditions of the MLA applicable to such Party, and to perform all covenants and agreements of such Party therein. Capitalized terms used in this SLA shall have the same meaning ascribed to them in the MLA unless otherwise indicated herein. The background section set forth above is hereby incorporated into this SLA by this reference in its entirety. A true and correct copy of the Prime Agreements) (subject to redaction in accordance with the MLA) is set forth in Schedule A-3 (Redacted Prime Agreement), which is attached hereto and incorporated herein by this reference.
9. Order of Precedence; Conflict. In the event of an inconsistency, conflict or discrepancy between, or among, (a) Section 1 of this SLA, (b) Schedule A-1 (Collocation Application), and/or (c) Schedule

A-2 (Structure Elevation and Site Plan), Schedule A-1 of this SLA shall govern. In the event of an inconsistency, conflict or discrepancy between (x) the MLA, and (y) this SLA, the terms set forth in this SLA shall control.
[REMAINDER OF PAGE INTENTIONALLY LEFT BLANK. SIGNATURE PAGE FOLLOWS.]

IN WITNESS WHEREOF, the Parties have executed this SLA as of the Effective Date.

LESSOR:

VB-S1 Assets, LLC

Title: CEO

LESSEE:

DISH Wireless L.L.C.
By:

Name: Thomas Fuchs

Title: \qquad Market General Manager

1. EXOTHERMC WEDD (2) Two \#2 AMG ARE TNNED SOLD COPPER CNNUCTORS TO GROUND

2. For grouno gono to stel only coat all surfaces wit an ant-oxidant compouno
3. Do wot mstal caile grounong ki at a beno ano alwars drect grouno conouctor
4. Nut d washer shall be placed on the front side of the grouno bar ano bolted on
. all grounding parts and eouiment to ee suppled and installed ey contracto
5. THEE contractor shall be responsibe for intalumg adomonal grouno bar as

YPICAL GROUNDING NOTES
no scale

6700 alexanoer bell drive CoLUMBAT, MD 21046
$B C$
architect
engineers
5661 COLUBBA PIKE, SUITE 200
FALIS CHURCH, VA 22041-2888

 \begin{tabular}{|l|l|l|}
\hline DRAWN BY: \& CHECKED BY: \& APPROVED BY:

\hline

\hline GMW \& NP \& COM

\hline
\end{tabular} RFDS REV \#:

CONSTRUCTION
SUBMITALS
\qquad
\qquad

1	$5 / 3 / 2 / 2$
2	$7 / 19 / 21$

A\&E PROJECT NUM
DISH WRELLESS PROUECT INFORMATON DCWDC00428A
12501-A DALEWOOD DR SILVER SPRING, MD 20906 SHEET TTLE
GROUNDING DETAILS
SHEET NUMEER

6700 Alexander bell drve CoLUMBII, MD 21046

昱

5661 COLUMBI PRE, SUITE 200
FALLS CHURCH, VA 22041-2868

 DRAWN BY: ${ }^{\text {CHECKED BY: }}$ |APRROVED BY: | GMW | NP | CDM |
| :---: | :---: | ---: |
| RFDS REV \#: | | 0 | CONSTRUCTION DOCUMENTS

SUBmitals		
Rev	Date	DESCRIPTIO
\wedge	3/2/21	ISSELE Por Renev
-	4/6/21	1 Ssuee for constructow
	5/3/21	Ssuce for consinuctan
2	7/10/21	ISSLEE For Construecom
dE PROUECT NUMBER		

DISH WRELLESS PROUECT INFORMATON DCWDC00428A

SITE ACTVIT REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECENING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE STEE YOU MUST
WIRELESS ANO TOWER OWNER NOC \& THE DISH WIRLESS AND TOWER OWNER CONSTUCTTON MANAGER.
2. "LOOK UP" - DISH WIRELESS AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRIT OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDRED DURING ALL STAGES
OF DESIGN, INSTALATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUPMENT INSTALATIONS SHALL OF DESIGN, INSTALATION, AND INSPECTION. TOWER MODIFCCATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHAL
NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON

 THE NOC TO GENERATE A SAFETY CLIMB MAITEEANCE AND CONTRACTOR NOTICE TICKET.
3. PRIOR TO THE START OF CONSTRUCTION, ALL REOURED JURISIICTIONAL PERMTSS SHALL BE OBTAANED. THIS INLLUDES, BUT
IS NOT LIMTED TO, BULDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTVTIES

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMTED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING
PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBIIT OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTON OF THE WORK CONTANED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDTTIN); FEDERAL, STATE, AND LOCAL REGLATIONS;
AND ANY APPLCABLE INOUSTRY CONSENSUS STANDARD RELATED TO THE CONSTRUCTION ACTVIIES BEING PERFORMED. ALL RIGGING PLANS SHAL ADHERE TO ANIIASSE A10.08 (LLTTEST EDITIN) ANO DISH WWRLLESS AND TOWER OWNER STANOARDS, INCLUDDING THE
REQUIRED INVOLVEMENT OF A QUALFIED ENGINER FOR CLASS IV CONSTRUCTION, TO CERTIFT THE SUPPORTING STRUCTURE(S) IN REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER
ACCORDANCE WITH ANI/TTA-322 (LATEST EDITION).
5. ALL SITE WORK TO COMPLY WTH DISH WRELESS AND TOWER OWNER INSTALLATON STANDARDS FOR CONSTRUCTION ACTVTIES
ON DISH WRELESS AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALATION, ATERATON, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

8. ${ }^{\text {in }}$ THE CONTRACTOR SHAL INSTALL AL
9. THE CONTRACTOR ShaLL CONTACT UTLLTTY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERYCES PRIOR TO THE START
10. ALL EXISTING ACTVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILTIES WHERE ENCOUNTERED IN THE WORK, SHALL BE
PROTECTE AT AL TTMES AND WHERE REOURED FOR THE PROPER EEECUTON OF THE WORK, SHALL BE RELOCATED AS DRECTED BY PROTECTED AT ALL TMES AND WHERE REQURED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY
CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVAING OR DRILING PIERS AROUND OR NEAR
 FALL PROTECTI
PROCEDURES.
11. ALL SITE WORK SHAL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFCCATONS,
LATEST APPROVED REVIION.
12. CONTRACTOR SHAL KEEP THE SITE FREE FROM ACCUMLLATING WASTE MATERAL, DEBRIS, AND TRASS AT THE COMPLLETION OF
THE WORK IF NEESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER RETUSE SHALL BE REMOVED FROM THE STIE AND
DISPOSED OF LEGALY.
13. ALL Existing inactive sewer, water, gas, electric and other utilities, which interfere with the execution of the Work, SHAL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINED AT POINTS WHEICH WILL NOT INTERFERE WTH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS AND TOWER OWNER, AND/OR LOCAL UTLLTIES. 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPCCIFICATION FOR STEE SIISNAGE
REQUIRED BY LOCAL JURISOCTION AND SIGNAGE REQUIRED ON INDNIDUAL PIECES OF EQUPMENT, ROOMS, ANO SHELTERS.
15. the site shall be graded to cause surface water to flow away from the carrier's equipment and tower areas. 16. THE SUB GRADE SHALL be compacted and brought to a smooth uniform grade prior to finished surface
application. 17. THE AREAS OF THE OWNERS PROPERT DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR
DRVVWA, SALL BE GRADD TO A UNIFORM LLOPE, AND STABIIZED TO PREVENT EROSION AS SPECIFED ON THE CONSTUCTION
DRAWINGS AND/OR PROJECT SPECIFCATIONS.
18. CONTRATTOR SHAL MINIIZE DIITURBANCE TO EXITTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF
REQURED DURING CONSTRUCTION, SHALL BE IN CONFORMACE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL 19. THE CONTRACTOR SHAL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAR
DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SAISFACTON OF OWNER.
20. CONTTACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERRALS SUCH AS COAXIAL CABLES AND OTHER TTEMS
REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTT
REMOVED FROM THE EXISTING FACLLITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
21. basis. CONTRActor shall leave premises in clean condition. trash and debris should be removed from site on a dally
bill
22. NO FILL OR EMBANKMEN MATERIAL SHALL Be PLACED on frozen ground. frozen materials, snow or ice shall not
BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH WRELESS

TOWER OWNER:TOWER OWNER
2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALY
EXERCIIED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMIAR LOCALITES. IT IS ASSUMED THAT WORK DEPICTED WIL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDCE
OF THE APPLICABLE CODE STANDARDS AND REOUREMENTS AND OF INDUSTRY ACCEPTED STANARD GOOD PRACTCE OF THE AP
CONOITION OR ELEMENT IS (OR CAN BE) EXPLLCITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED CONDITION OR ELEMENT II (OR CAN BE EXPLCITLY SHOON ON THESE DRAWIN.
STANDRD GOOD PRACTICE FOR MSCELANEOUS WORK NOT EXPLICTLY SHOWN.
3. THESE DRAWIGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF
CONSTRUCTION. THE CONTRACTOR SHALL
BE SOLELY RESPONSIBLE FOR THE CONSTUCTON MEANS, METHOCS, TECHNIQU

SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND
 SITE VISTST BY THE ENGINER OR HIS REPRESENT
OBSERVATON OF THE FINISHED STRUCTURE ONLY.
 THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETALLS, GENERAL NOTES, AND SPECIFICATIONS,
GREATER, MORE STRICT REQUREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQURED CONTACT THE ENGINER OF GREATER,
RECORD.
SUBSTANTAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST
IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SELE RESPONSIBILTTT OF THE CONTRACTOR TO

PABCREPANCIES AND/OR CONFLCTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFED AS SOON AS Possible.

7. ALL MATERALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WTH ALL APPLICABLE CODES, REGLATIONS
AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANGES, RULES, ANEGULATONS AND LAWFUL ORDERS OF ANY PUBLLC AUTHORITY REGAROING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED
 UNLESS NOTED OTHERWISE, THE WORK SHALL INCLLDE FURNISHING MAT
SECESARY TO COMPLLETE ALL INSTALATONS AS INDCCATED ON THE DRAWINGS.
9. THL THE CONTRACTOR SHALLI INSTALL ALL EQUIPMENT AND MATERILLS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS
10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE
AN ALTERNTEV INSTALATION FOR APPROVAL BY THE CARRER AND TOWER OWNER PRIOR TO PROCEEDNG WTH ANY SUCH CHANGE
 DRAWINGS.
12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURES, LANDSCAPING AND STRUCTURES. ANY
DAMAGED PART SHALL BE REPARED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH WIRELESS AND TOWER OWNER 13. CONTRACTOR SHALL LEGALLY AND PRRPERLY DISPOSE OF ALL SCRAP MATERRALS SUCH AS COAAIAL CABLES AND OTHER TEMS
REMOVED FROM THE EXXSTING FACIITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATON. 14.
basis. CONtractor shall leave premises in clean condition. trash and debris should be removed from site on a daly

700 AlEXANDER BELL DRVE
CoLUMBAI, MD 21046
rchitec
engineers

mix iuway

DRAWN BY: CHECKED BY: APPROVED BY | GMW | NP | COM |
| :--- | :--- | :--- | RFDS REV \#:

CONSTRUCTION

ReV		DATE	DESCRRPTION
		3/2/21	Ssuef

1	$5 / 3 / 21$
2	$7 / 1 / 2 / 21$

Sssuep for conssiveri
$\underset{\text { A\&E PROUECT NUMBER }}{ }$

Reless project informatio

DCWDC00428A
12501-A DALEWOOD DR. SHEET TTLE
general notes

AND CONSTRUCTION SPECIFCATION FOR CAST-IN-PLACE CONCRETE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN
2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO be 1000 pss.
3. ALL CONCRETE SHALL HAVE A MINMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO
MORE THAN 90 MINTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACE
TEMPERATURE OF CONCREE SHALL NOT EXCED 90° 'f AT TIME OF PLACEMENT.
4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAN AIR ENTRINING ADMXXURES. AMOUNT OF AIR ENTRAINMENT TO BE MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
5. all steel reinforcing shall conform to astm a615. all welded wire fabric (wwf) shall conform to astm alb5. all SPLICES SHALL BE CLASS "B" TENSION SPLCES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, SPLLCES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE
UNLESS NOTED OTHERWISE. YELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLOWS:
\#4 BARS AND SMALLER 40 ks
\#5 Bars and larger 60 ks
${ }^{6}{ }_{\text {DRAWINGS: }}^{\text {THE }}$
LLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON
Concrete cast aganst and permanently exposed to earth $3^{\prime \prime}$
CONCRETE EXPOSED TO EARTH OR WEATHER:
\#6 bars and larger 2^{n}
\#5 bars and smaller 1-1/2

- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- slab and walls $3 / 4^{\prime \prime}$
beams and columns $1-1 / 2^{\prime \prime}$

7. A tooled edee or a $3 / 4^{\prime \prime}$ chamfer shall be provided at all exposed edges of concrete, unless noted otherwise,

ELECTRICAL INSTALATION NOTES:

1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WTTH THE PROUECT SPECIFICATIONS, NEC AND ALL APPLCABLL
2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUTS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED
3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
4. all circuits shall be segregated and maintain minimum cable separation as required by the nec.
4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRTTERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF
THE NATONAL ELLCCRICAL COOE.
 CURRENT TO WHICH THEY ARE SUBBECTED, 22.OOO AC M MNMUM. VERIF AVALLABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE
RATNG OF EIECTRICAL EQUIPMENT IC ACCORDANCE WTH ARTCLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDCTITON.
5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE
LABELED WTH COLOR-CORED INSULATION OR ELECTRICAL TAPE (IM BRAND, $1 / 2^{2}$ " PLASTIC ELECTRICAL TAPE WTH UV PROTECTON, OR LABELED WTH COLOR-CODED INSULATION OR ELLCTRICAL TAPE (3 M BRAND,
EQUAL). THE IDENTFICATION METHOD SHALL CONFORM WTH NEC AND OSHA.
6. ALL ELECTRICAL COMPONENTS SHAL BE CLEARLY LABELLE WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE
CONFGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT 10's).
7. PANEL Boards (ID NUMBERS) SHALL be CLEARIY LABELED wTH PLASTIC LABELS.
8. TIE WRAPS ARE NOT ALLOWED.
9. ALL POWER AND EQUPPMENT GROUND WIRING IN TUBBNG OR CONDUUT SHAL BE SINGLE COPPER CONDCTOR (\#14 OR LARGER)
WWTH TTPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATON UNLESS OTHERWISE SPECFIFD. SUPPLEMENTAL EQUIPMEN GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (H6 OR LARGER) WITH
TPDE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THWW, RHW, OR RHW-2 INSULATON UNLESS OTHERWISE EPECIFED. 11. PPWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (\#14 OR LARGER) UNLESS 11. PPWER AND
OTHERWISE SPECFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TTPE TC CABLE (\#14 OR LARGER), WTH
THPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATON UNLESS OTHERWISE SPECIFED. 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STHLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STILE, COMPRESSION WIRE LUGS AND WRE NUTS
(OR EQUAL). UUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN $75^{\circ} \mathrm{C}$ ($90^{\circ} \mathrm{C}$ IF AVALABIE).
14. RACEWAY AND CABLE TRAY SHALL be LSTED OR LaBeled for electrical use in accordance with nema, ul, ansi/IEEE and 15. ELLCTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUTT (RMC) SHALL BE USED FOR
EXPOSED INDOOR LCOATIONS.
 SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE
GRADE PVC CONDUIT. 18. LIQUDD-TIGHT FLEXIBLE METALLIC CONDUTT (LIQUID-TTTE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VBRATION
OCCURS OR FLEXBIBLTY IS NEDED. 19. CONDUUT AND tUBing Fitings shal be threaded or compression-TTPe and approved for the location used. set
sCrew filings are not acceptable. 20. CABinets, boxes and wire wars shall be labeled for electrical use in accordance with nema, ul, ansi/ieee and the 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD (WIREMOLD SPECMATE WIREWAY).
22. SLOTtED Wiring duct shall be pvc and include cover (pandut type e or equal).
23. CONDUTTS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WLLL NOT BE PERMITTED. CLOSELY FOLOW THE LINES OF

24. EQUPMEN CABNETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET
STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA ((OR BETER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETER) FOR STEELL SHALL MET
EXTERIOR LOCATINS.
25. METAL RECEPTACLE, SWTTCH AND DEVCE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR
EXCEED UL $514 A$ AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR EXCEED UL 514 A AND NEMA OS
BETER) FOR EXTERIOR LOCATIONS.
26. Nonmetallic receptacle, switch and device boxes shal meet or exceed nema os 2 (newest pevision) aid be rated NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETER) FOR EXTERIOR LOCATIONS.
27. THE CONTRACTOR SHALL NOTIF AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH WIRLLESS AND TOWER
OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRBUTION PANEIS.
28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE RREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE
29. install lamicoid label on the meter center to show "oish wireless
30. all empty/spare conduits that are installed are to have a metered mule tape pull cord installed.
dish
wireless.
6700 ALEXANDER BELL DRVE Columbic, MD 21046
architects engine ers 5661 COLUMBA PIKE, SUITE 200
FALLS CHURCH, VA $22041-2868$

DRAWN BY:	CHECKED BY:	APPROVED BY

GMN	NP	COM

CONSTRUCTION DOCUMENTS

SUBMITALS		
Rev	DATE	DESCRIPTION
\wedge	3/2/21	Sssued for Revem
-	4/8/21	Ssued for comervucton
	3/3/21	Ssuee for constructow
2	7/18/21	Ssuce for consinuctom
A\&E PROJECT NUMEER		
		-
	IRELESS	S PRoJECT INFOR

andine notes:

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S)
IE
2. THE CONTRACTOR SHAL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR ACHEVE A TEST RESULT OF 5 OHMS OR LESS.
3. THE CONTRACTOR IS RESPONSIBE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO
PREVENT ANY LOSS OF CONTINUITY NIN THE GROUNDING SYSTEM OR DAMAGE TO THE CONUUTT AND PROVIDE TTESTING RESULTS.
4. METAL CONDUTT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALY CONTNUOUS WITH LISTED BONOING FITTINGS OR BY
BONDING ACROSS THE DISCONTINUITY WITH \#6 COPPER WIRE UL APPROVED GROUNDING TPPE CONDUTT CLAMPS.
5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR STRANDED COPPER CONDUCTORS
WTH GREN
EQUPMENT
6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WTH GREEN INSULATED SUPPLEMENTAL,
EQUPMENT GROUND WRES, \#6 STRANDED COPPER OR LARGER FOR INDOOR BTS; \#2 BARE SOLI TINNED COPPER FOR OUTDOOR BTS.
7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE
OF THE GROUND BUS ARE PERMITED.

OF THE GROUND BUS ARE PERMITIED.
8. ALL Exterior ground conductors between equipment/ground bars and the ground ring shall be \#2 solid tinned
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS
10. USE OF 90° bends in the protection grounding conductors shall be avoided when 45° bends can be adequately
supported.
11. EXOTHERMIC WELDS SHALL be USED FOR ALL GROUNOING CONNECTIONS bELOW GRADE.
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

BAR. ICE BRIDGE BONDING CONDUCTORS SHALL be Exothermically bonded or bolted to the bridge and the tower ground
15. APPROVED antioxidant coatings (i.e. CONductive gel or paste) shall be used on all compression and bolted ground
16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL
17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND
18. BOND ALL METALLIC OBJECTS WTTHIN 6 ft OF MAIN GROUND RING WITH (1) \#2 BARE SOLL TINNED COPPER GROUND
CONDUCTOR.
19. GROUND CONDUCTORS USED FOR THE FACILTY GROUNDING AND LIGHTNNG PROTECTION SYSTEMS SHALL NOT BE ROUTED TLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUREMENTS OR LOCAL
 CONDITIONL, NON-MEIALLIC MATERAL SUCH AS PVC CONDUT SHALL BE USED. WHERE USE OF METAL CONDUTIT IS UNAVOIDABLE (i.e.,
NONMETALLC CONDUIT PROHBITED BY LOCAL CODE) THE GROUND CONOUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONOUTT. 20. ALL GROUNDS THAT TRANSTIION FROM BELOW GRADE TO ABOVE GRADE MUST BE \#2 BARE SOLDD TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN $3^{\prime \prime}$ TO $6^{\prime \prime}$ OF CAD-WELD TERMNATIN POINT.
OF THE CONDUIT MUST BE SEALED WITH SLICONE CAULK. (ADD TRANSITONING GROUND STANDARD DETAIL AS WELL).
21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE
 SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALER THAN $2 / 0$ COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO

6700 ALEXANDER BELL DRVE
SUITE 221
BC
architects
enginers
5661 COLUBBA PIKE, SUITE 200
FALLS $\mathrm{CHURCH}, ~ V A$
$22041-2868$

Dish wreless project information DCWDC00428A 12501-A DALEWOOD DR SLVER SPRING, MD 2090

SHEET TTLE
general notes

Radio Frequency - Electromagnetic Energy (RF-EME) Jurisdictional Report

Site No. DCWDC00428A

I2501-A Dalewood Dr
Silver Spring, Maryland 20906
39º $3^{\prime} 34.20 " \mathrm{~N},-77^{\circ} 3^{\prime} 59.40 "$ W NAD83

EBI Project No. 6221001331
March 24, 2021

Prepared for:
Dish Wireless

Prepared by:

Table of Contents
EXECUTIVE SUMMARY 1
I. 0 INTRODUCTION 2
2.0 SITE DESCRIPTION 2
3.0 WOrst-Case Predictive Modeling 3
4.0 Mitigation/Site Control Options 4
5.0 Summary and Conclusions 5
6.0 LIMITATIONS 5

ApPendices

Appendix A Certifications
 Appendix B Radio Frequency Electromagnetic Energy Safety / Signage Plans Appendix C Federal Communications Commission (FCC) REQUIREMENTS

EXECUTIVE SUMMARY

Purpose of Report

EnviroBusiness Inc. (dba EBI Consulting) has been contracted by Dish Wireless to conduct radio frequency electromagnetic (RF-EME) modeling for Dish Wireless Site DCWDC00428A located at I2501-A Dalewood Dr in Silver Spring, Maryland to determine RF-EME exposure levels from proposed Dish Wireless communications equipment at this site. As described in greater detail in Appendix C of this report, the Federal Communications Commission (FCC) has developed Maximum Permissible Exposure (MPE) Limits for the general public and for occupational activities. This report summarizes the results of RF-EME modeling in relation to relevant FCC RF-EME compliance standards for limiting human exposure to RF-EME fields.

Statement of Compliance

A site is considered out of compliance with FCC regulations if there are areas that exceed the FCC exposure limits and there are no RF hazard mitigation measures in place. Any carrier which has an installation that contributes more than 5% of the applicable MPE must participate in mitigating these RF hazards.

As presented in the sections below, based on worst-case predictive modeling, there are no modeled areas on any accessible rooftop or ground-level walking/working surface related to the proposed antennas that exceed the FCC's occupational or general public exposure limits at this site.

At the nearest walking/working surfaces to the Dish Wireless antennas, the maximum power density generated by the DISH antennas is approximately $\mathbf{0 . 5 5}$ percent of the FCC's general public limit (0.II percent of the FCC's occupational limit).

The composite exposure level from all carriers on this site is approximately $\mathbf{0 . 7 0}$ percent of the FCC's general public limit ($\mathbf{0 . 1 4}$ percent of the FCC's occupational limit) at the nearest walking/working surface to each antenna.

Recommended control measures are outlined in Section 4.0 and within the Site Safety Plan (attached); Dish Wireless should also provide procedures to shut down and lockout/tagout this wireless equipment in accordance with their own standard operating protocol. Non-telecom workers who will be working in areas of exceedance are required to contact Dish Wireless since only DISH has the ability to lockout/tagout the facility, or to authorize others to do so.

I. 0 INTRODUCTION

Radio frequency waves are electromagnetic waves from the portion of the electromagnetic spectrum at frequencies lower than visible light and microwaves. The wavelengths of radio waves range from thousands of meters to around 30 centimeters. These wavelengths correspond to frequencies as low as 3 cycles per second (or hertz [Hz]) to as high as one gigahertz (one billion cycles per second).

Personal Communication (PCS) facilities used by Dish Wireless in this area will potentially operate within a frequency range of 600 to 5000 MHz . Facilities typically consist of: I) electronic transceivers (the radios or cabinets) connected to wired telephone lines; and 2) antennas that send the wireless signals created by the transceivers to be received by individual subscriber units (PCS telephones). Transceivers are typically connected to antennas by coaxial cables.

Because of the short wavelength of PCS services, the antennas require line-of-site paths for good propagation, and are typically installed a distance above ground level. Antennas are constructed to concentrate energy towards the horizon, with as little energy as possible scattered towards the ground or the sky. This design, combined with the low power of PCS facilities, generally results in no possibility for exposure to approach Maximum Permissible Exposure (MPE) levels, with the exception of in areas in the immediate vicinity of the antennas.

MPE limits do not represent levels where a health risk exists, since they are designed to provide a substantial margin of safety. These limits apply for continuous exposures and are intended to provide a prudent margin of safety for all persons, regardless of age, gender, size or health.

2.0 Site Description

This project site includes the following proposed wireless telecommunication antennas on a monopole located at I250I-A Dalewood Dr in Silver Spring, Maryland.

$\begin{aligned} & \text { 華 } \\ & \stackrel{y}{c} \\ & \hline \end{aligned}$												(sł7eM) dyIヨ
1	Dish	JMA	MX08FRO665-20 02DT 600	600	0	0	62	6.1	134.40772	11.35	1456.88	2389.29
I	Dish	JMA	MX08FRO665-20 02DT 700	700	0	0	52	6.1	134.40772	12.05	1711.69	2807.17
1	Dish	JMA	MX08FRO665-20 02DT 2007	2007	0	0	62	6.1	134.40772	15.75	4012.58	6580.64
1	Dish	JMA	MX08FRO665-20 02DT 2100	2100	0	0	65	6.1	134.40772	16.75	5051.54	8284.53
2	Dish	JMA	MX08FRO665-20 02DT 600	600	120	0	62	6.1	134.40772	11.35	1456.88	2389.29
2	Dish	JMA	MX08FRO665-20 02DT 700	700	120	0	52	6.1	134.40772	12.05	1711.69	2807.17
2	Dish	JMA	MX08FRO665-20 02DT 2007	2007	120	0	62	6.1	134.40772	15.75	4012.58	6580.64
2	Dish	JMA	MX08FRO665-20 02DT 2100	2100	120	0	65	6.1	134.40772	16.75	5051.54	8284.53
3	Dish	JMA	MX08FRO665-20 02DT 600	600	240	0	62	6.1	134.40772	11.35	1456.88	2389.29
3	Dish	JMA	MX08FRO665-20 02DT 700	700	240	0	52	6.1	134.40772	12.05	1711.69	2807.17
3	Dish	JMA	MX08FRO665-20 02DT 2007	2007	240	0	62	6.1	134.40772	15.75	4012.58	6580.64
3	Dish	JMA	MX08FRO665-20 02DT 2100	2100	240	0	65	6.1	134.40772	16.75	5051.54	8284.53
4	T-Mobile	GENERIC	PANEL 4FT 00DT 850	850	0	0	61	4.0	100	11.52	1419.06	2327.25
5	T-Mobile	GENERIC	PANEL 4FT O0DT 1900	1900	0	0	65	4.0	100	14.65	2917.43	4784.58
6	T-Mobile	GENERIC	PANEL 4FT 00DT 850	850	0	0	61	4.0	100	11.52	1419.06	2327.25
7	T-Mobile	GENERIC	PANEL 4FT 00DT 850	850	120	0	61	4.0	100	11.52	1419.06	2327.25

8	T-Mobile	GENERIC	PANEL 4FT 00DT 1900	1900	120	0	65	4.0	100	14.65	2917.43	4784.58
9	T-Mobile	GENERIC	PANEL 4FT 00DT 850	850	120	0	61	4.0	100	11.52	1419.06	2327.25
10	T-Mobile	GENERIC	PANEL 4FT 00DT 850	850	240	0	61	4.0	100	11.52	1419.06	2327.25
11	T-Mobile	GENERIC	PANEL 4FT 00DT 1900	1900	240	0	65	4.0	100	14.65	2917.43	4784.58
12	T-Mobile	GENERIC	PANEL 4FT 00DT 850	850	240	0	61	4.0	100	11.52	1419.06	2327.25

- Note there is I Dish Wireless antenna per sector at this site. For clarity, the different frequencies for each antenna are entered on separate lines.

Ant $\#$	NAME	\mathbf{X}	\mathbf{Y}	Antenna Radiation Centerline	Z-Height Adj. Main Roof	Z-Height Ground
I	Dish	0.6	1.0	90.0	45.0	90.0
2	Dish	5.5	1.0	90.0	45.0	90.0
3	Dish	10.2	1.0	90.0	45.0	90.0
4	T-Mobile	14.7	6.8	97.5	52.5	97.5
5	T-Mobile	13.1	11.1	97.5	52.5	97.5
6	T-Mobile	10.4	15.2	97.5	52.5	97.5
7	T-Mobile	1.0	15.0	97.5	52.5	97.5
8	T-Mobile	1.8	11.3	97.5	52.5	97.5
9	T-Mobile	4.3	7.2	97.5	52.5	97.5
I0	T-Mobile	0.6	1.0	97.5	52.5	97.5
II	T-Mobile	14.7	6.8	97.5	52.5	97.5
12	T-Mobile	1.0	15.0	97.5	52.5	97.5

- Note the Z-Height represents the distance from the antenna centerline.

The above tables contain an inventory of proposed Dish Wireless antennas and other carrier antennas if sufficient information was available to model them. Note that EBI uses an assumed set of antenna specifications and powers for unknown and other carrier antennas for modeling purposes. The FCC guidelines incorporate two separate tiers of exposure limits that are based upon occupational/controlled exposure limits (for workers) and general population/uncontrolled exposure limits for members of the general public that may be exposed to antenna fields. While access to this site is considered uncontrolled, the analysis has considered exposures with respect to both controlled and uncontrolled limits as an untrained worker may access adjacent rooftop locations. Additional information regarding controlled/uncontrolled exposure limits is provided in Appendix C. Appendix B presents a site safety plan that provides a plan view of the monopole with antenna locations.

3.0 Worst-Case Predictive Modeling

EBI has performed theoretical MPE modeling using RoofMaster ${ }^{\text {TM }}$ software to estimate the worst-case power density at the site's nearby broadcast levels resulting from operation of the antennas. RoofMaster ${ }^{\text {TM }}$ is a widely-used predictive modeling program that has been developed by Waterford Consultants to predict RF power density values for rooftop and tower telecommunications sites produced by vertical collinear antennas that are typically used in the cellular, PCS, paging and other communications services. Using the computational methods set forth in Federal Communications Commission (FCC) Office of Engineering \& Technology (OET) Bulletin 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" (OET-65), RoofMaster ${ }^{\text {TM }}$ calculates predicted power density in a scalable grid based on the contributions of all RF sources characterized in the study scenario. At each grid location, the cumulative power density is expressed as a percentage of the FCC limits. Manufacturer antenna pattern data is utilized in these calculations. RoofMaster ${ }^{\text {TM }}$ models consist of the Far Field model as specified in OET-65 and an implementation of the OET-65 Cylindrical Model (Sula9).

The models utilize several operational specifications for different types of antennas to produce a plot of spatially-averaged power densities that can be expressed as a percentage of the applicable exposure limit.

For this report, EBI utilized antenna and power data provided by Dish Wireless and compared the resultant worst-case MPE levels to the FCC's occupational/controlled exposure limits outlined in OET Bulletin 65 . The assumptions used in the modeling are based upon information provided by Dish Wireless and information gathered from other sources. Elevations of walking/working surfaces were estimated based on elevations provided and available aerial imagery. Sector orientation assignments were made assuming coverage is directed to areas of site. Changes to antenna mount heights or placement will impact site compliance. The parameters used for modeling are summarized in the Site Description antenna inventory table in Section 2.0.

One other unknown carrier also has antennas on the monopole. Information about these antennas was included in the modeling analysis.

Based on worst-case predictive modeling, there are no modeled areas on any accessible rooftop or ground-level walking/working surface related to the proposed Dish Wireless antennas that exceed the FCC's occupational or general public exposure limits at this site. At the nearest walking/working surfaces to the Dish Wireless antennas, the maximum power density generated by the Dish Wireless antennas is approximately 0.55 percent of the FCC's general public limit (0.1 I percent of the FCC's occupational limit). The composite exposure level from all carriers on this site is approximately 0.70 percent of the FCC's general public limit (0.14 percent of the FCC's occupational limit) at the nearest walking/working surface to each antenna.

The Site Safety Plan also presents areas where Dish Wireless antennas contribute greater than 5\% of the applicable MPE limit for a site. A site is considered out of compliance with FCC regulations if there are areas that exceed the FCC exposure limits and there are no RF hazard mitigation measures in place. Any carrier which has an installation that contributes more than 5% of the applicable MPE must participate in mitigating these RF hazards.

There are no modeled areas on the rooftop and ground that exceed the FCC's limits for general public or occupational exposure in front of the other carrier antennas.

The inputs used in the modeling are summarized in the Site Description antenna inventory table in Section 2.0. A graphical representation of the RoofMaster ${ }^{T M}$ modeling results is presented in Appendix B. Microwave dish antennas are designed for point-to-point operations at the elevations of the installed equipment rather than ground level coverage. The maximum power density generated by all carrier antennas, including microwaves and panel antennas, is included in the modeling results presented within this report.

4.0 Mitigation/Site Control Options

EBI's modeling indicates that there are no areas in front of the Dish Wireless antennas that exceed the FCC standards for occupational or general public exposure. All exposures above the FCC's safe limits require that individuals be elevated above the rooftop and ground. In order to alert people accessing the monopole, a Guidelines sign is recommended for installation at each access point to the monopole.

There are no barriers recommended on this site.
These protocols and recommended control measures have been summarized and included with a graphic representation of the antennas and associated signage and control areas in a RF-EME Site Safety Plan, which is included as Appendix B. Individuals and workers accessing the monopole should be provided with
a copy of the attached Site Safety Plan, made aware of the posted signage and barriers, and signify their understanding of the Site Safety Plan.

To reduce the risk of exposure, EBI recommends that access to areas associated with the active antenna installation be restricted and secured where possible.

Implementation of the signage and barriers recommended in the Site Safety Plan and in this report will bring this site into compliance with the FCC's rules and regulations.

5.0 SUMMARY AND CONCLUSIONS

EBI has prepared a Radiofrequency - Electromagnetic Energy (RF-EME) Compliance Report for telecommunications equipment installed by Dish Wireless Site Number DCWDC00428A located at I250I-A Dalewood Dr in Silver Spring, Maryland to determine worst-case predicted RF-EME exposure levels from wireless communications equipment installed at this site. This report summarizes the results of RF-EME modeling in relation to relevant Federal Communications Commission (FCC) RF-EME compliance standards for limiting human exposure to RF-EME fields.

As presented in the sections above, based on the FCC criteria, there are no modeled areas on any accessible rooftop or ground-level walking/working surface related to the proposed antennas that exceed the FCC's occupational or general public exposure limits at this site.

Workers should be informed about the presence and locations of antennas and their associated fields. Recommended control measures are outlined in Section 4.0 and within the Site Safety Plan (attached); Dish Wireless should also provide procedures to shut down and lockout/tagout this wireless equipment in accordance with their own standard operating protocol. Non-telecom workers who will be working in areas of exceedance are required to contact Dish Wireless since only Dish Wireless has the ability to lockout/tagout the facility, or to authorize others to do so.

6.0 LIMITATIONS

This report was prepared for the use of Dish Wireless. It was performed in accordance with generally accepted practices of other consultants undertaking similar studies at the same time and in the same locale under like circumstances. The conclusions provided by EBI are based solely on the information provided by the client. The observations in this report are valid on the date of the investigation. Any additional information that becomes available concerning the site should be provided to EBI so that our conclusions may be revised and modified, if necessary. This report has been prepared in accordance with Standard Conditions for Engagement and authorized proposal, both of which are integral parts of this report. No other warranty, expressed or implied, is made.

Appendix A

Certifications

Preparer Certification

I, Erik Johnson, state that:

- I am an employee of EnviroBusiness Inc. (d/b/a EBI Consulting), which provides RF-EME safety and compliance services to the wireless communications industry.
- I have successfully completed RF-EME safety training, and I am aware of the potential hazards from RF-EME and would be classified "occupational" under the FCC regulations.
- I am fully aware of and familiar with the Rules and Regulations of both the Federal Communications Commissions (FCC) and the Occupational Safety and Health Administration (OSHA) with regard to Human Exposure to Radio Frequency Radiation.
- I have reviewed the data provided by the client and incorporated it into this Site Compliance Report such that the information contained in this report is true and accurate to the best of my knowledge.

> Reviewed and Approved by:

Michael McGuire
Electrical Engineer
mike@h2dc.com

Note that EBl's scope of work is limited to an evaluation of the Radio Frequency - Electromagnetic Energy (RF-EME) field generated by the antennas and broadcast equipment noted in this report. The engineering and design of the building and related structures, as well as the impact of the antennas and broadcast equipment on the structural integrity of the building, are specifically excluded from EBl's scope of work.

Appendix B

Radio Frequency Electromagnetic Energy
 Safety Information and Signage Plans

Antenna Face Level Simulation

Adjacent Main Roof Level Simulation

Ground Level Simulation

Dish Wireless Signage Plan

Sign	Posting Instructions	Required Signage / Mitigation
	Guidelines Informational sign used to notify workers that there are active antennas installed and provide guidelines for working in RF environments.	Securely post Guidelines sign at the main rooftop access door and every point of access to the site in a manner conspicuous to all individuals entering thereon as indicated in the signage plan.
$(((0)))$	Notice Used to notify individuals they are entering an area where the power density emitted from transmitting antennas may exceed the FCC's MPE limit for the general public or occupational exposures.	No Notice sign required.
	Caution Used to notify individuals that they are entering a hot spot where either the general public or occupational FCC's MPE limit is or could be exceeded.	No Caution sign required.
	Warning Used to notify individuals that they are entering a hot zone where either the general public or occupational FCC's MPE limit has been exceeded.	No Warning sign required.

Appendix C

Federal Communications

 Commission (FCC) RequirementsThe FCC has established Maximum Permissible Exposure (MPE) limits for human exposure to Radiofrequency Electromagnetic (RF-EME) energy fields, based on exposure limits recommended by the National Council on Radiation Protection and Measurements (NCRP) and, over a wide range of frequencies, the exposure limits developed by the Institute of Electrical and Electronics Engineers, Inc. (IEEE) and adopted by the American National Standards Institute (ANSI) to replace the 1982 ANSI guidelines. Limits for localized absorption are based on recommendations of both ANSI/IEEE and NCRP.

The FCC guidelines incorporate two separate tiers of exposure limits that are based upon occupational/controlled exposure limits (for workers) and general public/uncontrolled exposure limits for members of the general public.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/ controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general public/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

General public/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment-related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Table I and Figure I (below), which are included within the FCC's OET Bulletin 65, summarize the MPE limits for RF emissions. These limits are designed to provide a substantial margin of safety. They vary by frequency to take into account the different types of equipment that may be in operation at a particular facility and are "time-averaged" limits to reflect different durations resulting from controlled and uncontrolled exposures.

The FCC's MPEs are measured in terms of power (mW) over a unit surface area $\left(\mathrm{cm}^{2}\right)$. Known as the power density, the FCC has established an occupational MPE of 5 milliwatts per square centimeter $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ and an uncontrolled MPE of $\mathrm{I} \mathrm{mW} / \mathrm{cm}^{2}$ for equipment operating in the 1900 MHz frequency range. For the Dish Wireless equipment operating at 600 MHz or 850 MHz , the FCC's occupational MPE is $2.83 \mathrm{~mW} / \mathrm{cm}^{2}$ and an uncontrolled MPE of $0.57 \mathrm{~mW} / \mathrm{cm}^{2}$. For the Dish Wireless equipment operating at 1900 MHz , the FCC's occupational MPE is $5.0 \mathrm{~mW} / \mathrm{cm}^{2}$ and an uncontrolled MPE limit of $1.0 \mathrm{~mW} / \mathrm{cm}^{2}$. These limits are considered protective of these populations.

Table I: Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure

Frequency Range $\mathbf{(M H z)}$	Electric Field Strength (E) $(\mathbf{V / m})$	Magnetic Field Strength (H) $(\mathbf{A} / \mathbf{m})$	Power Density (S) $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	Averaging Time $\left[\mathbf{E D}^{2},[\mathbf{H}]^{2}\right.$, or S $(\mathbf{m i n u t e s)}$
$0.3-3.0$	614	I .63	$(100)^{*}$	6
$3.0-30$	$1842 / \mathrm{f}$	$4.89 / \mathrm{f}$	$\left(900 / \mathrm{f}^{2}\right)^{*}$	6
$30-300$	61.4	0.163	1.0	6
$300-1,500$	--	--	$\mathrm{f} / 300$	6
$1,500-100,000$	--	--	5	6

(B) Limits for General Public/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ${ }^{2}$)	Averaging Time $[E]^{2},[H]^{2}$, or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f²)*	30
30-300	27.5	0.073	0.2	30
300-1,500	--	--	f/l,500	30
1,500-100,000	--	--	1.0	30

$\mathrm{f}=$ Frequency in (MHz)

* Plane-wave equivalent power density

Figure 1. FCC Limits for Maximum Permissible Exposure (MPE)
Plane-wave Equivalent Power Density

Based on the above, the most restrictive thresholds for exposures of unlimited duration to RF energy for several personal wireless services are summarized below:

Personal Wireless Service	Approximate Frequency	Occupational MPE	Public MPE
Microwave (Point-to-Point)	$5,000-80,000 \mathrm{MHz}$	$5.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I} .00 \mathrm{~mW} / \mathrm{cm}^{2}$
Broadband Radio (BRS)	$2,600 \mathrm{MHz}$	$5.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I} .00 \mathrm{~mW} / \mathrm{cm}^{2}$
Wireless Communication (WCS)	$2,300 \mathrm{MHz}$	$5.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I} .00 \mathrm{~mW} / \mathrm{cm}^{2}$
Advanced Wireless (AWS)	$2,100 \mathrm{MHz}$	$5.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I} .00 \mathrm{~mW} / \mathrm{cm}^{2}$
Personal Communication (PCS)	$1,950 \mathrm{MHz}$	$5.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I} .00 \mathrm{~mW} / \mathrm{cm}^{2}$
Cellular Telephone	870 MHz	$2.90 \mathrm{~mW} / \mathrm{cm}^{2}$	$0.58 \mathrm{~mW} / \mathrm{cm}^{2}$
Specialized Mobile Radio (SMR)	855 MHz	$2.85 \mathrm{~mW} / \mathrm{cm}^{2}$	$0.57 \mathrm{~mW} / \mathrm{cm}^{2}$
Long Term Evolution (LTE)	700 MHz	$2.33 \mathrm{~mW} / \mathrm{cm}^{2}$	$0.47 \mathrm{~mW} / \mathrm{cm}^{2}$
Most Restrictive Frequency Range	$30-300 \mathrm{MHz}$	$1.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$0.20 \mathrm{~mW} / \mathrm{cm}^{2}$

MPE limits are designed to provide a substantial margin of safety. These limits apply for continuous exposures and are intended to provide a prudent margin of safety for all persons, regardless of age, gender, size, or health.

Personal Communication (PCS) facilities used by Dish Wireless in this area will potentially operate within a frequency range of 600 to 2100 MHz . Facilities typically consist of: I) electronic transceivers (the radios or cabinets) connected to wired telephone lines; and 2) antennas that send the wireless signals created by the transceivers to be received by individual subscriber units (PCS telephones). Transceivers are typically connected to antennas by coaxial cables.

Because of the short wavelength of PCS services, the antennas require line-of-site paths for good propagation, and are typically installed above ground level. Antennas are constructed to concentrate energy towards the horizon, with as little energy as possible scattered towards the ground or the sky. This design, combined with the low power of PCS facilities, generally results in no possibility for exposure to approach Maximum Permissible Exposure (MPE) levels, with the exception of areas directly in front of the antennas.

FCC Compliance Requirement

A site is considered out of compliance with FCC regulations if there are areas that exceed the FCC exposure limits and there are no RF hazard mitigation measures in place. Any carrier which has an installation that contributes more than 5% of the applicable MPE must participate in mitigating these RF hazards.

Application General Infomation				
Applicant Name	Jacobs Telecommunications	Updated		7/19/2021
Application Type	Colocated	Ann. Plan?	Yes	
Carrier	Other	Will site be used to support government		
Solution Type	Other	telecommunications facilities		
Existing	Existing	government use?		
		Gvt. Use De		
Application Description				
Install (3) Panel Antennas (1 per sector) on (1) Antenna Mount. Install (6) Radio Units (2 per sector), (1) OVP Device, (1) Hybrid Cable and associated jumpers on existing telecommunications tower. Install (1) metal platform for (2) cabinets, (1) ice bridge, (1) telco-fiber box, (1) GPS unit, (1) safety switch, (1) ciena box, and (1) meter socket on the ground beneath the tower.				

Site Infomation		
Site Id 299	Zoning R-60	
Structure Type Monopole	Latitude 39.059453	
	Longitude -77.066497	
Street Address 12501 Dalewood Rd	Ground Elevation 371.97	
County Site Name Wheaton High School	Ground Elevation 371.97	
Carrier Site Name DCWDC00428A	City Silver Spring	
Site Owner MCPS	Lease Status Leased	
Structure Owner Board of Education	Does the structure require an antenna structure registration under FCC Title 47	Yes
Existing Structure Height $\quad \square 97.5$		
Provide the proposed height of the replacement structure \square without any antenna (New, Replacement Apps Only) Justification of why this site was selected:	Distance to Residential Property (New, Replacement, Colocation Only) Distance to Commercial Property (New, Replacement, Colocation Only)	187 495
Existing tower that would provide desired coverage		
NearbySites (New, Replacement Apps Only):		

App No:

Screening considerations(New, Colocations, Replacement Apps Only):
This is an existing communications tower without concealment. It is the Applicant's impression that concealment was not required when the tower was zoned.

App No:

Antenna Model JMA MX08FRO665-20_V0F
Frequency 642-647; 688-693; 722-728; 1915-1920; 1995-2000; 2000-2020; 2180-2200
RAD Center $\quad 90$ Max ERP $\quad 5051$ Antenna Dimensions $72^{\prime \prime} \times 20$ " $\times 8$ " Quantity $\square 3$

W I R E L E S S

MX08FRO665-20

NWA ${ }^{\text {TM }}$ X-Pol 8-Port Antenna

X-Pol 8-Port 6 ft 65° Fast Roll Off with Smart Bias-Ts:

4 ports 617-894 MHz and 4 ports $1695-2200 \mathrm{MHz}$

- Fast Roll Off (FRO ${ }^{\text {TM }}$) azimuth beam pattern improves Intra- and Inter-cell SINR
- Excellent passive intermodulation (PIM) performance reduces harmful interference.
- Fully integrated (iRETs) with Smart Bias-Ts \& independent RET control for low and mid bands for ease of network optimization
- SON-Ready array spacing supports beamforming capabilities.
- High total power handling to maximize network efficiency
- Reduced tower loading for ease of site deployment

Fast Roll-Off antennas increase data throughput without compromising coverage

The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference \& Noise Ratio (SINR) by eliminating overlap between sectors .

Non-FRO antenna

Large traditional antenna pattern overlap creates harmful interference. JMA's FRO antenna pattern minimizes overlap, thereby minimizing interference.

LTE throughput	SINR	Speed $(\mathrm{bps} / \mathbf{H z})$	Speed increase	CQI
Excellent	>18	>4.5	$333+\%$	$8-10$
Good	$15-18$	$3.3-4.5$	277%	$6-7$
Fair	$10-15$	$2-3.3$	160%	$4-6$
Poor	<10	<2	0%	$1-3$

The LTE radio automatically selects the best throughput based on measured SINR.

JMA FRO antenna

Electrical specification (minimum/maximum)	Ports 1, 2, 3, 4		Ports 5, 6, 7, 8		
Frequency bands, MHz	617-698	698-894	1695-1880	1850-1990	1920-2200
Polarization	$\pm 45^{\circ}$		$\pm 45^{\circ}$		
Gain over all tilts, max, dBi	13.9	15.0	17.9	18.0	18.8
Horizontal beamwidth (HBW), degrees ${ }^{1}$	68	62	64	61	62
Front-to-back ratio, co-polar power @180 ${ }^{\circ}$, dB	>27	>29	>32	>35	>32
Vertical beamwidth (VBW), degrees ${ }^{1}$	14.2	12.5	5.4	5.2	4.9
Electrical downtilt (EDT) range, degrees	2-14		2-12		
First upper side lobe (USLS) suppression, dB^{1}	≤-16.0	≤-16.5	≤-18.0	≤-18.0	≤-18.0
Minimum cross-polar isolation, port-to-port, dB^{1}	25	25	25	25	25
Max VSWR / return loss, dB	1.5:1 / -14.0		1.5:1 / -14.0		
Max passive intermodulation (PIM), 2x20W carrier, dBc	-153		-153		
Max input power per any port, watts	300		250		
Total composite power all ports (1-8), watts ${ }^{2}$	1500				

1 Typical value over frequency and tilt

Electrical specification (minimum/maximum)	Ports 1, 2, 3,4		Ports 5, 6, 7, 8		
Frequency bands, MHz	$617-698$	$698-894$	$1695-1880$	$1850-1990$	$1920-2200$
Average gain over all tilts, dBi (Gain Tolerance)	13.2 ± 0.7	14.4 ± 0.6	17.5 ± 0.4	17.4 ± 0.4	18.3 ± 0.5
Horizontal beamwidth tolerance (HBW), degrees ${ }^{\mathbf{1}}$	± 5	± 6.5	± 5.5	± 3.5	± 5.0
Vertical beamwidth tolerance (VBW), degrees	± 0.3				
Front-to-back ratio, co-polar power @180$\pm \mathbf{3 0}{ }^{\circ}, \mathbf{d B}$	>27	>25	>25	>26	>24
X-Pol discrimination (CPR) at boresight, dB	>20	>19	17.5	>19	>20
First upper side lobe (USLS) suppression boresight to $\mathbf{2 0}^{\circ}$, dB $^{\mathbf{1}}$	≤-16	≤-15	≤-16	≤-16	≤-16

Mechanical specifications

Dimensions height/width/depth, inches (mm)	$72.0 / 20.0 / 8.0(1828.8 / 508.0 / 203.2)$
Shipping dimensions length/width/height, inches (mm)	$77.3 / 23.8 / 14.5(1963.42 / 605 / 368)$
No. of RF input ports, connector type, and location	$8 \times 4.3-10$ female, bottom
RF connector torque	$96 \mathrm{lbf} \cdot \mathrm{in}(10.85 \mathrm{~N} \cdot \mathrm{~m}$ or $8 \mathrm{lbf} \cdot \mathrm{ft})$
Net antenna weight, lb (kg)	$54(24.5)$
Shipping weight, lb (kg)	$94(42.6)$
Antenna mounting and downtilt kit included with antenna	91900318
Net weight of the mounting and downtilt kit, lb (kg)	$18(8.2)$
Range of mechanical up/down tilt	-2° to 12°
Rated wind survival speed, mph (km/h)	$150(241)$
Frontal and lateral wind loading @ 150 km/h, lbf (N)	$108.1(480.9), 20.5(91.2)$
Effective projected area @ 150 km/h (EPA), frontal, sq ft	4.9

MX08FRO665-20
NWA $V^{\text {TM }}$ X-Pol 8-Port Antenna
Front view Back view

Bottom view

MX08FRO665-20

W LRELESS
NWA $V^{\text {TM }}$ X-Pol 8-Port Antenna
Remote electrical tilt (RET 1000) information

RET location	Integrated into antenna
RET interface connector type	8-pin AISG connector per IEC 60130-9 or RF port Bias-T
RET connector torque	Min $0.5 \mathrm{~N} \cdot \mathrm{~m}$ to max $1.0 \mathrm{~N} \cdot \mathrm{~m}$ (hand pressure \& finger tight)
RET interface connector quantity	2 pairs of AISG male/female connectors and 2 RF port Bias-Ts, ports $1 \& 5$
RET interface connector location	Bottom of the antenna
Total no. of internal RETs $\mathbf{6 1 7} \mathbf{- 8 9 4} \mathbf{~ M H z}$	1
Total no. of internal RETs $\mathbf{1 6 9 5 - 2 2 0 0} \mathbf{~ M H z}$	1
RET input operating voltage, vdc	$10-30$
RET max power consumption, idle state, \mathbf{W}	≤ 2.0
RET max power consumption, normal operating conditions, \mathbf{W}	≤ 10.0
RET communication protocol	Hardware AISG 3.0; firmware AISG 2.0, field-upgradable to AISG 3.0

RET and RF connector topology

Each RET device can be controlled either via the designated external AISG connector or RF port as shown below:

Array topology
4 sets of radiating arrays
R1: 617-894 MHz
R2: 617-894 MHz
B1: 1695-2200 MHz
B2: 1695-2200 MHz

Fujitsu - DiSH Triple-band RU Technical Specifications

RU General Specification	
Part number	TA08025-B605
TRX Configuration	4T4R
Operating Frequency	n 71 \& n29 \& n26 Frequencies (Triple-Band)
Instantaneous Bandwidth	$\begin{gathered} \text { n71: } 35 \mathrm{MHz} \\ \text { n29: } 11 \mathrm{MHz} \\ \text { n26: } 7 \mathrm{MHz} \end{gathered}$
Operation Bandwidth (3GPP)	$\begin{gathered} \mathrm{n} 71: 35 \mathrm{MHz} \\ \mathrm{n} 29: 10 \mathrm{MHz} \\ \mathrm{n} 26: 5 \mathrm{MHz} \end{gathered}$
CC BW	5/10/20 MHz
Capacity	$\begin{gathered} \mathrm{n} 71: 2 \mathrm{Cr}(5 / 10 / 20 \mathrm{MHz}) / \mathrm{NB}-\mathrm{IOT} \\ \mathrm{n} 26: 1 \mathrm{Cr}(5 \mathrm{MHz}) / \mathrm{NB}-\mathrm{IOT} \\ \mathrm{n} 29: 2 \mathrm{Cr}(5 / 10 \mathrm{MHz}) \end{gathered}$
Interface to DU	ORAN 7.2x / 10G optical IF
TX Specification	
Output Power per TX	n71: 30W per port n29: 40W per port n26: 10 W per port
ACLR	Compliant with 3GPP TS 38.104
Transmitter Spurious Emissions	Compliant with 3GPP TS 38.104
EVM	Compliant with 3GPP TS 38.104
RX Specification	
Noise Figure	2.5 dB (normal condition 2.2 dB)
Blocking Features	Compliant with 3GPP TS 38.104
Receiver spurious emissions	Compliant with 3GPP TS 38.104
Mechanical Specification	
Volume	35 L
Dimension	$\mathrm{W}: 400 \mathrm{~mm}, \mathrm{H}: 380 \mathrm{~mm}$, D: 230 mm
Antenna Connector Type	4.3-10 RF connector
Antenna Control Interface	AISG
Power Supply	DC -58~-36V
Power Consumption	<1300W
Weight	34 kg
Environmental	
Humidity (Absolute humidity)	$0.03 \mathrm{~g} / \mathrm{m} 3 \sim 30 \mathrm{~g} / \mathrm{m} 3$
Atmospheric Pressure	Between 70 kPa and 106 kPa
Operating Temperature	$-40^{\circ} \mathrm{C} \sim+55^{\circ} \mathrm{C}$
IP Rating	IP65
Cooling	Passive

Mounting Options		
Pole	TBD	
Wall	TBD	

Base/Tower/Rooftop Solution for RRH Applications RDIDC-9181-PF-48

The deployment of Remote Radio Head (RRH) architecture poses unique challenges to the mobile telecom industry.

Raycap's innovative RRH protection solutions mitigate the risk of damage due to lightning
and provide high levels of availability and reliability to radio equipment.

Features

- Employs the Strikesorb ${ }^{\circledR}$ 30-V1-2CFV Surge Protective Device (SPD) specifically designed for the Remote Radio Head (RRH) installation environment and certified for use in DC applications and at low DC operating voltages (48V)
- The Strikesorb 30-V1-2CFV is a Class I SPD, certified by VDE per the IEC 61643-11 standard as suitable for installation in areas where direct lightning exposure is expected. Strikesorb 30-V1-2CFV is able to withstand direct lightning currents of up to $12.5 \mathrm{kA}(10 / 350)$ and induced surge currents of up to 60kA (8/20).
- Provides very low let through / clamping voltage - unique for a Class I product - as it does not employ spark gaps or other switching elements. Strikesorb offers unique protection levels to the RRH equipment as well as the Base Band Units
- For individual circuit per radio architecture
- Configurable cable ports are designed to accommodate varying diameters of hybrid (combined power and fiber optic) or standard cables
- Fully recognized to the UL 1449 4th Edition Safety Standard
- Patent pending design

Benefits

- Offers unique maintenance-free protection against direct lightning currents
- Protects up to 9 Remote Radio Heads and connects up to 18 fiber pairs
- Utilizes a NEMA 4X rated enclosure, allowing for indoor or outdoor installation at the base, on a roof or tower top

© 2020 Raycap All rights reserved.
G02-01-946 200414

Base/Tower Solution for RRH Applications RDIDC-9181-PF-48

Electrical	
Model Number	RDIDC-9181-PF-48
Nominal Operating Voltage	48 VDC
Nominal Discharge Current [${ }_{\mathrm{n}}$]	$20 \mathrm{kA} \mathrm{8/20} \mathrm{\mu s}$
Maximum Surge Current [$I_{\max }$]	$60 \mathrm{kA} 8 / 20 \mu \mathrm{~s}$
Maximum Impulse (Lightning) Current per IEC 61643-11	12.5kA 10/350 $\mu \mathrm{s}$
Maximum Continuous Operationg Voltage [$U_{\text {c }}$]	75VDC
Response Time [t_{A}]	$<1 \mathrm{~ns}$
Voltage Protection Rating (VPR) per UL 1449 4th Edition	400 V
Let-through Voltage @ 20kA (8/20)	<410V
Let-through Voltage @ 10kA (8/20)	<330V
Voltage Protection Level (VPL) per IEC 61643-11	<200V @ 12.5kA 10/350 s
Fault Monitoring	Local status indicator - dry contact alarm
Circuit Configuration	Parallel; -48VDC suppy-return, return-ground
Protection Class as per IEC 61643-1	Class I
Incoming Power/Fiber	Power: \#10/8/6/4/2 AWG (6 mm² 33.6 mm ${ }^{2}$) power trunk Fiber: LC/LC
Strikesorb Module Type	$30-\mathrm{V} 1-2 \mathrm{CFV}$
Mechanical	
Suppression Connection Method	Compression lug, \#14-\#2 AWG (2.1 mm² -33.6 mm²) Copper; \#12-\#2 AWG (3.3 mm² 33.6 mm²) Aluminum
Fiber Connection Method	24 LC-LC Single mode
Environmental Rating	NEMA 4X
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
UV Resistant	Yes
Combined Wind Load	150 mph (sustained): $110.5 \mathrm{lbs}(491.5 \mathrm{~N}) 195 \mathrm{mph}$ (gust): 186 lbs (827.4N)
Dimensions	$14^{\prime \prime} \times 16^{\prime \prime} \times 8$ "
Estimated Weight	21.85 lbs

Optional Product Configurations
Bridge Kit (required for base unit when pairing with HCS 1.0 legacy cable) Order Part \#: RTMDC-5634-WB-KIT
Standards Gompliance $\&$ Gertifications
Strikesorb modules are compliant to the following Surge Protective Device (SPD) Standards
Standards ANSI/UL 1449 4th Edition, IEEE C62.41, NEMA LS-1, IEC 61643-11 (Class I Protection), IEC 61643-12, EN 61643-11:2002 (including A11:2007)

Product Diagram

Raycap

AWG=American Wire Gauge

C

Radio Frequency - Electromagnetic Energy (RF-EME) Jurisdictional Report

Site No. DCWDC00428A

I2501-A Dalewood Dr
Silver Spring, Maryland 20906
39º $3^{\prime} 34.20 " \mathrm{~N},-77^{\circ} 3^{\prime} 59.40 "$ W NAD83

EBI Project No. 6221001331
March 24, 2021

Prepared for:
Dish Wireless

Prepared by:

Table of Contents
EXECUTIVE SUMMARY 1
I. 0 INTRODUCTION 2
2.0 SITE DESCRIPTION 2
3.0 WOrst-Case Predictive Modeling 3
4.0 Mitigation/Site Control Options 4
5.0 Summary and Conclusions 5
6.0 LIMITATIONS 5

ApPendices

Appendix A Certifications
 Appendix B Radio Frequency Electromagnetic Energy Safety / Signage Plans Appendix C Federal Communications Commission (FCC) REQUIREMENTS

EXECUTIVE SUMMARY

Purpose of Report

EnviroBusiness Inc. (dba EBI Consulting) has been contracted by Dish Wireless to conduct radio frequency electromagnetic (RF-EME) modeling for Dish Wireless Site DCWDC00428A located at I2501-A Dalewood Dr in Silver Spring, Maryland to determine RF-EME exposure levels from proposed Dish Wireless communications equipment at this site. As described in greater detail in Appendix C of this report, the Federal Communications Commission (FCC) has developed Maximum Permissible Exposure (MPE) Limits for the general public and for occupational activities. This report summarizes the results of RF-EME modeling in relation to relevant FCC RF-EME compliance standards for limiting human exposure to RF-EME fields.

Statement of Compliance

A site is considered out of compliance with FCC regulations if there are areas that exceed the FCC exposure limits and there are no RF hazard mitigation measures in place. Any carrier which has an installation that contributes more than 5% of the applicable MPE must participate in mitigating these RF hazards.

As presented in the sections below, based on worst-case predictive modeling, there are no modeled areas on any accessible rooftop or ground-level walking/working surface related to the proposed antennas that exceed the FCC's occupational or general public exposure limits at this site.

At the nearest walking/working surfaces to the Dish Wireless antennas, the maximum power density generated by the DISH antennas is approximately $\mathbf{0 . 5 5}$ percent of the FCC's general public limit (0.II percent of the FCC's occupational limit).

The composite exposure level from all carriers on this site is approximately $\mathbf{0 . 7 0}$ percent of the FCC's general public limit ($\mathbf{0 . 1 4}$ percent of the FCC's occupational limit) at the nearest walking/working surface to each antenna.

Recommended control measures are outlined in Section 4.0 and within the Site Safety Plan (attached); Dish Wireless should also provide procedures to shut down and lockout/tagout this wireless equipment in accordance with their own standard operating protocol. Non-telecom workers who will be working in areas of exceedance are required to contact Dish Wireless since only DISH has the ability to lockout/tagout the facility, or to authorize others to do so.

I. 0 INTRODUCTION

Radio frequency waves are electromagnetic waves from the portion of the electromagnetic spectrum at frequencies lower than visible light and microwaves. The wavelengths of radio waves range from thousands of meters to around 30 centimeters. These wavelengths correspond to frequencies as low as 3 cycles per second (or hertz [Hz]) to as high as one gigahertz (one billion cycles per second).

Personal Communication (PCS) facilities used by Dish Wireless in this area will potentially operate within a frequency range of 600 to 5000 MHz . Facilities typically consist of: I) electronic transceivers (the radios or cabinets) connected to wired telephone lines; and 2) antennas that send the wireless signals created by the transceivers to be received by individual subscriber units (PCS telephones). Transceivers are typically connected to antennas by coaxial cables.

Because of the short wavelength of PCS services, the antennas require line-of-site paths for good propagation, and are typically installed a distance above ground level. Antennas are constructed to concentrate energy towards the horizon, with as little energy as possible scattered towards the ground or the sky. This design, combined with the low power of PCS facilities, generally results in no possibility for exposure to approach Maximum Permissible Exposure (MPE) levels, with the exception of in areas in the immediate vicinity of the antennas.

MPE limits do not represent levels where a health risk exists, since they are designed to provide a substantial margin of safety. These limits apply for continuous exposures and are intended to provide a prudent margin of safety for all persons, regardless of age, gender, size or health.

2.0 Site Description

This project site includes the following proposed wireless telecommunication antennas on a monopole located at I250I-A Dalewood Dr in Silver Spring, Maryland.

$\begin{array}{\|l\|l} \text { 華 } \\ \stackrel{y}{c} \end{array}$									$\begin{gathered} \text { Total Power Input } \\ \text { (Watts) } \end{gathered}$			
I	Dish	JMA	MX08FRO665-20 02DT 600	600	0	0	62	6.1	134.40772	11.35	1456.88	2389.29
1	Dish	JMA	MX08FRO665-20 02DT 700	700	0	0	52	6.1	134.40772	12.05	1711.69	2807.17
1	Dish	JMA	MX08FRO665-20 02DT 2007	2007	0	0	62	6.1	134.40772	15.75	4012.58	6580.64
1	Dish	JMA	MX08FRO665-20 02DT 2100	2100	0	0	65	6.1	134.40772	16.75	5051.54	8284.53
2	Dish	JMA	MX08FRO665-20 02DT 600	600	120	0	62	6.1	134.40772	11.35	1456.88	2389.29
2	Dish	JMA	MX08FRO665-20 02DT 700	700	120	0	52	6.1	134.40772	12.05	1711.69	2807.17
2	Dish	JMA	MX08FRO665-20 02DT 2007	2007	120	0	62	6.1	134.40772	15.75	4012.58	6580.64
2	Dish	JMA	MX08FRO665-20 02DT 2100	2100	120	0	65	6.1	134.40772	16.75	5051.54	8284.53
3	Dish	JMA	MX08FRO665-20 02DT 600	600	240	0	62	6.1	134.40772	11.35	1456.88	2389.29
3	Dish	JMA	MX08FRO665-20 02DT 700	700	240	0	52	6.1	134.40772	12.05	1711.69	2807.17
3	Dish	JMA	MX08FRO665-20 02DT 2007	2007	240	0	62	6.1	134.40772	15.75	4012.58	6580.64
3	Dish	JMA	MX08FRO665-20 02DT 2100	2100	240	0	65	6.1	134.40772	16.75	5051.54	8284.53
4	Unknown	GENERIC	PANEL 4FT 00DT 850	850	0	0	61	4.0	100	11.52	1419.06	2327.25
5	Unknown	GENERIC	PANEL 4FT O0DT 1900	1900	0	0	65	4.0	100	14.65	2917.43	4784.58
6	Unknown	GENERIC	PANEL 4FT 00DT 850	850	0	0	61	4.0	100	11.52	1419.06	2327.25
7	Unknown	GENERIC	PANEL 4FT 00DT 850	850	120	0	61	4.0	100	11.52	1419.06	2327.25

8	Unknown	GENERIC	PANEL 4FT 00DT 1900	1900	120	0	65	4.0	100	14.65	2917.43	4784.58
9	Unknown	GENERIC	PANEL 4FT 00DT 850	850	120	0	61	4.0	100	11.52	1419.06	2327.25
10	Unknown	GENERIC	PANEL 4FT 00DT 850	850	240	0	61	4.0	100	11.52	1419.06	2327.25
11	Unknown	GENERIC	PANEL 4FT 00DT 1900	1900	240	0	65	4.0	100	14.65	2917.43	4784.58
12	Unknown	GENERIC	PANEL 4FT 00DT 850	850	240	0	61	4.0	100	11.52	1419.06	2327.25

- Note there is I Dish Wireless antenna per sector at this site. For clarity, the different frequencies for each antenna are entered on separate lines.

Ant $\#$	NAME	\mathbf{X}	\mathbf{Y}	Antenna Radiation Centerline	Z-Height Adj. Main Roof	Z-Height Ground
I	Dish	0.6	1.0	90.0	45.0	90.0
2	Dish	5.5	1.0	90.0	45.0	90.0
3	Dish	10.2	1.0	90.0	45.0	90.0
4	Unknown	14.7	6.8	97.5	52.5	97.5
5	Unknown	13.1	11.1	97.5	52.5	97.5
6	Unknown	10.4	15.2	97.5	52.5	97.5
7	Unknown	1.0	15.0	97.5	52.5	97.5
8	Unknown	1.8	11.3	97.5	52.5	97.5
9	Unknown	4.3	7.2	97.5	52.5	97.5
10	Unknown	0.6	1.0	97.5	52.5	97.5
11	Unknown	14.7	6.8	97.5	52.5	97.5
12	Unknown	1.0	15.0	97.5	52.5	97.5

- Note the Z-Height represents the distance from the antenna centerline.

The above tables contain an inventory of proposed Dish Wireless antennas and other carrier antennas if sufficient information was available to model them. Note that EBI uses an assumed set of antenna specifications and powers for unknown and other carrier antennas for modeling purposes. The FCC guidelines incorporate two separate tiers of exposure limits that are based upon occupational/controlled exposure limits (for workers) and general population/uncontrolled exposure limits for members of the general public that may be exposed to antenna fields. While access to this site is considered uncontrolled, the analysis has considered exposures with respect to both controlled and uncontrolled limits as an untrained worker may access adjacent rooftop locations. Additional information regarding controlled/uncontrolled exposure limits is provided in Appendix C. Appendix B presents a site safety plan that provides a plan view of the monopole with antenna locations.

3.0 Worst-Case Predictive Modeling

EBI has performed theoretical MPE modeling using RoofMaster ${ }^{\text {TM }}$ software to estimate the worst-case power density at the site's nearby broadcast levels resulting from operation of the antennas. RoofMaster ${ }^{\text {TM }}$ is a widely-used predictive modeling program that has been developed by Waterford Consultants to predict RF power density values for rooftop and tower telecommunications sites produced by vertical collinear antennas that are typically used in the cellular, PCS, paging and other communications services. Using the computational methods set forth in Federal Communications Commission (FCC) Office of Engineering \& Technology (OET) Bulletin 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" (OET-65), RoofMaster ${ }^{\text {TM }}$ calculates predicted power density in a scalable grid based on the contributions of all RF sources characterized in the study scenario. At each grid location, the cumulative power density is expressed as a percentage of the FCC limits. Manufacturer antenna pattern data is utilized in these calculations. RoofMaster ${ }^{\text {TM }}$ models consist of the Far Field model as specified in OET-65 and an implementation of the OET-65 Cylindrical Model (Sula9).

The models utilize several operational specifications for different types of antennas to produce a plot of spatially-averaged power densities that can be expressed as a percentage of the applicable exposure limit.

For this report, EBI utilized antenna and power data provided by Dish Wireless and compared the resultant worst-case MPE levels to the FCC's occupational/controlled exposure limits outlined in OET Bulletin 65 . The assumptions used in the modeling are based upon information provided by Dish Wireless and information gathered from other sources. Elevations of walking/working surfaces were estimated based on elevations provided and available aerial imagery. Sector orientation assignments were made assuming coverage is directed to areas of site. Changes to antenna mount heights or placement will impact site compliance. The parameters used for modeling are summarized in the Site Description antenna inventory table in Section 2.0.

One other unknown carrier also has antennas on the monopole. Information about these antennas was included in the modeling analysis.

Based on worst-case predictive modeling, there are no modeled areas on any accessible rooftop or ground-level walking/working surface related to the proposed Dish Wireless antennas that exceed the FCC's occupational or general public exposure limits at this site. At the nearest walking/working surfaces to the Dish Wireless antennas, the maximum power density generated by the Dish Wireless antennas is approximately 0.55 percent of the FCC's general public limit (0.1 I percent of the FCC's occupational limit). The composite exposure level from all carriers on this site is approximately 0.70 percent of the FCC's general public limit (0.14 percent of the FCC's occupational limit) at the nearest walking/working surface to each antenna.

The Site Safety Plan also presents areas where Dish Wireless antennas contribute greater than 5\% of the applicable MPE limit for a site. A site is considered out of compliance with FCC regulations if there are areas that exceed the FCC exposure limits and there are no RF hazard mitigation measures in place. Any carrier which has an installation that contributes more than 5% of the applicable MPE must participate in mitigating these RF hazards.

There are no modeled areas on the rooftop and ground that exceed the FCC's limits for general public or occupational exposure in front of the other carrier antennas.

The inputs used in the modeling are summarized in the Site Description antenna inventory table in Section 2.0. A graphical representation of the RoofMaster ${ }^{T M}$ modeling results is presented in Appendix B. Microwave dish antennas are designed for point-to-point operations at the elevations of the installed equipment rather than ground level coverage. The maximum power density generated by all carrier antennas, including microwaves and panel antennas, is included in the modeling results presented within this report.

4.0 Mitigation/Site Control Options

EBI's modeling indicates that there are no areas in front of the Dish Wireless antennas that exceed the FCC standards for occupational or general public exposure. All exposures above the FCC's safe limits require that individuals be elevated above the rooftop and ground. In order to alert people accessing the monopole, a Guidelines sign is recommended for installation at each access point to the monopole.

There are no barriers recommended on this site.
These protocols and recommended control measures have been summarized and included with a graphic representation of the antennas and associated signage and control areas in a RF-EME Site Safety Plan, which is included as Appendix B. Individuals and workers accessing the monopole should be provided with
a copy of the attached Site Safety Plan, made aware of the posted signage and barriers, and signify their understanding of the Site Safety Plan.

To reduce the risk of exposure, EBI recommends that access to areas associated with the active antenna installation be restricted and secured where possible.

Implementation of the signage and barriers recommended in the Site Safety Plan and in this report will bring this site into compliance with the FCC's rules and regulations.

5.0 SUMMARY AND CONCLUSIONS

EBI has prepared a Radiofrequency - Electromagnetic Energy (RF-EME) Compliance Report for telecommunications equipment installed by Dish Wireless Site Number DCWDC00428A located at I250I-A Dalewood Dr in Silver Spring, Maryland to determine worst-case predicted RF-EME exposure levels from wireless communications equipment installed at this site. This report summarizes the results of RF-EME modeling in relation to relevant Federal Communications Commission (FCC) RF-EME compliance standards for limiting human exposure to RF-EME fields.

As presented in the sections above, based on the FCC criteria, there are no modeled areas on any accessible rooftop or ground-level walking/working surface related to the proposed antennas that exceed the FCC's occupational or general public exposure limits at this site.

Workers should be informed about the presence and locations of antennas and their associated fields. Recommended control measures are outlined in Section 4.0 and within the Site Safety Plan (attached); Dish Wireless should also provide procedures to shut down and lockout/tagout this wireless equipment in accordance with their own standard operating protocol. Non-telecom workers who will be working in areas of exceedance are required to contact Dish Wireless since only Dish Wireless has the ability to lockout/tagout the facility, or to authorize others to do so.

6.0 LIMITATIONS

This report was prepared for the use of Dish Wireless. It was performed in accordance with generally accepted practices of other consultants undertaking similar studies at the same time and in the same locale under like circumstances. The conclusions provided by EBI are based solely on the information provided by the client. The observations in this report are valid on the date of the investigation. Any additional information that becomes available concerning the site should be provided to EBI so that our conclusions may be revised and modified, if necessary. This report has been prepared in accordance with Standard Conditions for Engagement and authorized proposal, both of which are integral parts of this report. No other warranty, expressed or implied, is made.

Appendix A

Certifications

Preparer Certification

I, Erik Johnson, state that:

- I am an employee of EnviroBusiness Inc. (d/b/a EBI Consulting), which provides RF-EME safety and compliance services to the wireless communications industry.
- I have successfully completed RF-EME safety training, and I am aware of the potential hazards from RF-EME and would be classified "occupational" under the FCC regulations.
- I am fully aware of and familiar with the Rules and Regulations of both the Federal Communications Commissions (FCC) and the Occupational Safety and Health Administration (OSHA) with regard to Human Exposure to Radio Frequency Radiation.
- I have reviewed the data provided by the client and incorporated it into this Site Compliance Report such that the information contained in this report is true and accurate to the best of my knowledge.

> Reviewed and Approved by:

Michael McGuire
Electrical Engineer
mike@h2dc.com

Note that EBl's scope of work is limited to an evaluation of the Radio Frequency - Electromagnetic Energy (RF-EME) field generated by the antennas and broadcast equipment noted in this report. The engineering and design of the building and related structures, as well as the impact of the antennas and broadcast equipment on the structural integrity of the building, are specifically excluded from EBl's scope of work.

Appendix B

Radio Frequency Electromagnetic Energy
 Safety Information and Signage Plans

Antenna Face Level Simulation

Adjacent Main Roof Level Simulation

Ground Level Simulation

Dish Wireless Signage Plan

Sign	Posting Instructions	Required Signage / Mitigation
	Guidelines Informational sign used to notify workers that there are active antennas installed and provide guidelines for working in RF environments.	Securely post Guidelines sign at the main rooftop access door and every point of access to the site in a manner conspicuous to all individuals entering thereon as indicated in the signage plan.
$(((0)))$	Notice Used to notify individuals they are entering an area where the power density emitted from transmitting antennas may exceed the FCC's MPE limit for the general public or occupational exposures.	No Notice sign required.
	Caution Used to notify individuals that they are entering a hot spot where either the general public or occupational FCC's MPE limit is or could be exceeded.	No Caution sign required.
	Warning Used to notify individuals that they are entering a hot zone where either the general public or occupational FCC's MPE limit has been exceeded.	No Warning sign required.

Appendix C

Federal Communications

 Commission (FCC) RequirementsThe FCC has established Maximum Permissible Exposure (MPE) limits for human exposure to Radiofrequency Electromagnetic (RF-EME) energy fields, based on exposure limits recommended by the National Council on Radiation Protection and Measurements (NCRP) and, over a wide range of frequencies, the exposure limits developed by the Institute of Electrical and Electronics Engineers, Inc. (IEEE) and adopted by the American National Standards Institute (ANSI) to replace the 1982 ANSI guidelines. Limits for localized absorption are based on recommendations of both ANSI/IEEE and NCRP.

The FCC guidelines incorporate two separate tiers of exposure limits that are based upon occupational/controlled exposure limits (for workers) and general public/uncontrolled exposure limits for members of the general public.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/ controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general public/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

General public/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment-related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Table I and Figure I (below), which are included within the FCC's OET Bulletin 65, summarize the MPE limits for RF emissions. These limits are designed to provide a substantial margin of safety. They vary by frequency to take into account the different types of equipment that may be in operation at a particular facility and are "time-averaged" limits to reflect different durations resulting from controlled and uncontrolled exposures.

The FCC's MPEs are measured in terms of power (mW) over a unit surface area $\left(\mathrm{cm}^{2}\right)$. Known as the power density, the FCC has established an occupational MPE of 5 milliwatts per square centimeter $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ and an uncontrolled MPE of $\mathrm{I} \mathrm{mW} / \mathrm{cm}^{2}$ for equipment operating in the 1900 MHz frequency range. For the Dish Wireless equipment operating at 600 MHz or 850 MHz , the FCC's occupational MPE is $2.83 \mathrm{~mW} / \mathrm{cm}^{2}$ and an uncontrolled MPE of $0.57 \mathrm{~mW} / \mathrm{cm}^{2}$. For the Dish Wireless equipment operating at 1900 MHz , the FCC's occupational MPE is $5.0 \mathrm{~mW} / \mathrm{cm}^{2}$ and an uncontrolled MPE limit of $1.0 \mathrm{~mW} / \mathrm{cm}^{2}$. These limits are considered protective of these populations.

Table I: Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure

Frequency Range $\mathbf{(M H z)}$	Electric Field Strength (E) $(\mathbf{V / m})$	Magnetic Field Strength (H) $(\mathbf{A} / \mathbf{m})$	Power Density (S) $\left(\mathbf{m W} / \mathbf{c m}^{2}\right)$	Averaging Time $\left[\mathbf{E D}^{2},[\mathbf{H}]^{2}\right.$, or S $(\mathbf{m i n u t e s)}$
$0.3-3.0$	614	I .63	$(100)^{*}$	6
$3.0-30$	$1842 / \mathrm{f}$	$4.89 / \mathrm{f}$	$\left(900 / \mathrm{f}^{2}\right)^{*}$	6
$30-300$	61.4	0.163	1.0	6
$300-1,500$	--	--	$\mathrm{f} / 300$	6
$1,500-100,000$	--	--	5	6

(B) Limits for General Public/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ${ }^{2}$)	Averaging Time $[E]^{2},[H]^{2}$, or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f²)*	30
30-300	27.5	0.073	0.2	30
300-1,500	--	--	f/l,500	30
1,500-100,000	--	--	1.0	30

$\mathrm{f}=$ Frequency in (MHz)

* Plane-wave equivalent power density

Figure 1. FCC Limits for Maximum Permissible Exposure (MPE)
Plane-wave Equivalent Power Density

Based on the above, the most restrictive thresholds for exposures of unlimited duration to RF energy for several personal wireless services are summarized below:

Personal Wireless Service	Approximate Frequency	Occupational MPE	Public MPE
Microwave (Point-to-Point)	$5,000-80,000 \mathrm{MHz}$	$5.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I} .00 \mathrm{~mW} / \mathrm{cm}^{2}$
Broadband Radio (BRS)	$2,600 \mathrm{MHz}$	$5.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I} .00 \mathrm{~mW} / \mathrm{cm}^{2}$
Wireless Communication (WCS)	$2,300 \mathrm{MHz}$	$5.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I} .00 \mathrm{~mW} / \mathrm{cm}^{2}$
Advanced Wireless (AWS)	$2,100 \mathrm{MHz}$	$5.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I} .00 \mathrm{~mW} / \mathrm{cm}^{2}$
Personal Communication (PCS)	$1,950 \mathrm{MHz}$	$5.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$\mathrm{I} .00 \mathrm{~mW} / \mathrm{cm}^{2}$
Cellular Telephone	870 MHz	$2.90 \mathrm{~mW} / \mathrm{cm}^{2}$	$0.58 \mathrm{~mW} / \mathrm{cm}^{2}$
Specialized Mobile Radio (SMR)	855 MHz	$2.85 \mathrm{~mW} / \mathrm{cm}^{2}$	$0.57 \mathrm{~mW} / \mathrm{cm}^{2}$
Long Term Evolution (LTE)	700 MHz	$2.33 \mathrm{~mW} / \mathrm{cm}^{2}$	$0.47 \mathrm{~mW} / \mathrm{cm}^{2}$
Most Restrictive Frequency Range	$30-300 \mathrm{MHz}$	$1.00 \mathrm{~mW} / \mathrm{cm}^{2}$	$0.20 \mathrm{~mW} / \mathrm{cm}^{2}$

MPE limits are designed to provide a substantial margin of safety. These limits apply for continuous exposures and are intended to provide a prudent margin of safety for all persons, regardless of age, gender, size, or health.

Personal Communication (PCS) facilities used by Dish Wireless in this area will potentially operate within a frequency range of 600 to 2100 MHz . Facilities typically consist of: I) electronic transceivers (the radios or cabinets) connected to wired telephone lines; and 2) antennas that send the wireless signals created by the transceivers to be received by individual subscriber units (PCS telephones). Transceivers are typically connected to antennas by coaxial cables.

Because of the short wavelength of PCS services, the antennas require line-of-site paths for good propagation, and are typically installed above ground level. Antennas are constructed to concentrate energy towards the horizon, with as little energy as possible scattered towards the ground or the sky. This design, combined with the low power of PCS facilities, generally results in no possibility for exposure to approach Maximum Permissible Exposure (MPE) levels, with the exception of areas directly in front of the antennas.

FCC Compliance Requirement

A site is considered out of compliance with FCC regulations if there are areas that exceed the FCC exposure limits and there are no RF hazard mitigation measures in place. Any carrier which has an installation that contributes more than 5% of the applicable MPE must participate in mitigating these RF hazards.

Prepared by:

SGS Towers
Sinnott Gering and Schmitt Towers, Inc.
10834 Old Mill Rd Suite 8 Omaha, NE 68154
(402)-575-8885

Engineering@sgstowers.com

Structural Analysis Report

Table of Contents

Introduction 1
Existing Structural Information 1
Final Proposed Equipment Loading for DISH Wireless L.L.C. 1
Design Criteria 2
Analysis Results 2
Assumptions 2
Conclusions 3
Calculations Attached
Collocation Application Attached

Design Criteria

The tower was analyzed using tnxTower (Version 8.0.7.5) software to find the internal loads using the following design criteria.

State	Maryland
City / County Building Code	Montgomery County (IBC 2018)
Standard Codes	TIA-222-H
Basic Wind Speed	$113 \mathrm{MPH}($ Vult $)$
Basic Wind Speed w/ Ice	$40 \mathrm{MPH} \mathrm{w} / 1.0$ " Ice

Note: A seismic analysis has been performed and is not controlling.

Analysis Results

Based on the foregoing information, our structural analysis determined that the existing tower is structurally capable of supporting the proposed equipment loads without modification. The base plate and anchor bolts have also been evaluated and are found to be structurally capable of supporting the proposed equipment loads without modification. The structural design report (EEI, Project No. 13160, Drawing No. D13160-98.1) analyzed for drilled pier foundation. An analysis for drilled pier foundation was performed and it was determined to be structurally capable of supporting the proposed equipment loads without modifications.

Assumptions

1. The existing tower has been maintained to manufacturer's specifications and is in good condition.
2. All member connections are considered to have been designed to meet the load carrying capacity of the connected members.
3. Antenna mount loads have been estimated based on generally accepted industry standards.
4. The mounts for the proposed antennas have been analyzed and designed by others.
5. Ultimate Bearing value and blow count for soil has been taken from TIA-222-H, ANNEX F Table F-1:Presumptive Soil Parameters to perform foundation analysis.

Introduction

We have completed our structural analysis of the proposed equipment installation on the foregoing Monopole to determine its ability to support the new loads proposed by DISH Wireless L.L.C. The objective of the analysis is to determine if the Monopole meets the current structural codes and standards with the proposed equipment installation.

Existing Structural Information

The following documents for the existing structure were made available for our structural analysis.

Tower Information	Engineered Endeavors Incorporated, Structural Design Report / Project No: 13160, Drawing No. GS55637, dated August 9, 2005
Foundation Information	Engineered Endeavors Incorporated, Structural Design Report / Project No: 13160, Drawing No. D13160-98.1, dated August 9, 2005
Equipment Information	DISH Wireless - Vertical Bridge Collocation Application No. C-103052 Version 2, dated February 12, 2021. T-Mobile - Loading provided by Vertical Bridge on February 18, 2021
Tower Reinforcement Information	Tower has not been previously reinforced

Final Proposed Equipment Loading for DISH Wireless L.L.C.

The following proposed loading was obtained from the Vertical Bridge Collocation Application:

Antenna/Equipment					Coax	
Mount (ft.)	RAD (ft.)	Qty.	Antenna	Type	Qty.	Size/Type
90.0	-	1	Platform Mount w/ Handrails	Mount	1	1.6" Hybrid
	90.0	6*	JMA MX08FRO665-20_V0F	Panel		
		6*	Fujitsu TA08025-B604	RRU		
		6*	Fujitsu TA08025-B605	RRU		
		1	Raycap RDIDC-9181-PF-48	$\begin{gathered} \hline \text { Junction } \\ \text { Box } \end{gathered}$		

Note: Proposed equipment shown in bold.
Note: Proposed feed lines to be placed on the outside of the pole.
Note: Remainder of T-Mobile reserved rights are considered in the analysis
Note: Remainder of Dish reserved rights are considered in the analysis.
Note: *Designates that half of the quantity is reserved loading.
Note: For all other existing equipment please refer to the tower profile and attached tnxTower output.

Conclusions

The existing tower described above has sufficient capacity to support the proposed loading based on the two governing codes referenced above. The base plate, anchor bolts and foundation have also been evaluated and have sufficient capacity to support the proposed loads.

We appreciate the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance, please call us anytime at 402-575-8885.

Sincerely,

Analysis by:
Reviewed by:

Ravi Siddharth Raja, EI
Project Engineer
Nicholas J. Schmitt, P.E., S.E.
Vice President

Attachment 1:
 Calculations

DESIGNED APPURTENANCE LOADING

| MATERIAL STRENGTH |
| :--- | :--- | :---: | :---: | :---: | :---: |
| GRADE Fy Fu GRADE Fy Fu
 A572-65 65 ksi 80 ksi |

TOWER DESIGN NOTES

1. Tower is located in Montgomery County, Maryland.
2. Tower designed for Exposure C to the TIA-222-H Standard.
3. Tower designed for a 113 mph basic wind in accordance with the TIA-222-H Standard.
4. Tower is also designed for a 40 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Risk Category II.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TOWER RATING: 98.7\%

TORQUE $46 \mathrm{lb}-\mathrm{ft}$ 40 mph WIND - 1.0000 in ICE

TORQUE $120 \mathrm{lb-ft}$ REACTIONS - 113 mph WIND

SGS Towers
Chapell Hill,
NC
Phone: engineering@sgstowers.com
FAX:

${ }^{\text {Job: }}$ SGS\# 2101548		
Project: BOE - Richard D Riddle School (US-MD-5072)		
Client: Vertical Bridge	Drawn by: Ravi Siddharth Raja	App'd:
Code: TIA-222-H	Date: 02/23/21	Scale: NTS
	Ster	${ }^{\text {No. }} \mathrm{E}-1$

TIA-222-H - 113 mph/40 mph 1.0000 in Ice Exposure C Leg Capacity Leg Compression (lb)

SGS TowersChapell Hill,NCPhone: engineering@sgstowers.comFAX.	${ }^{\text {Pob: }}$ SGS\# 2101548		
	Project: BOE - Richard D Riddle School (US-MD-5072)		
	Client: Vertical Bridge	Drawn by: Ravi Siddharth Raja	App'd:
	Code: TIA-222-H	Date: 02/23/21	Scale: NTS
	Path:		Dwg No. E-3

SGS Towers
Chapell Hill,
NC
Phone: engineering@sgstowers.com
${ }^{\text {Pob: }}$ SGS\# 2101548
Project: BOE - Richard D Riddle School (US-MD-5072)
Client: Vertical Bridge \quad Drawn by: Ravi Siddharth Raja ${ }^{\text {Ap }}$
C

Twist (deg)

SGS Towers
Chapell Hill,
NC
Phone: engineering@sgstowers.com

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & \\ & \\ & 1 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
NC Phone: engineering@sgstowers.com FAX. FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower is located in Montgomery County, Maryland.
Tower base elevation above sea level: 371.97 ft .
Basic wind speed of 113 mph .
Risk Category II.
Exposure Category C.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height: 0.00 ft .
Nominal ice thickness of 1.0000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 40 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.05 .
Tower analysis based on target reliabilities in accordance with Annex S.
Load Modification Factors used: $\mathrm{K}_{\text {es }}\left(\mathrm{F}_{\mathrm{w}}\right)=0.95, \mathrm{~K}_{\text {es }}\left(\mathrm{t}_{\mathrm{i}}\right)=0.85$.
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
$\sqrt{ }$ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas
Add IBC .6D+W Combination
Sort Capacity Reports By Component
Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption Poles
Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No Appurtenances
Outside and Inside Corner Radii Are
Known

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & \\ & 2 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	BOE - Richard D Riddle School (US-MD-5072)		$\begin{aligned} & \text { Date } \\ & \text { 19:35:07 02/23/21 } \end{aligned}$
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section	Elevation ft	Section Length $f t$	Splice Length $f t$	Number of Sides	Top Diameter in	$\begin{gathered} \text { Bottom } \\ \text { Diameter } \\ \text { in } \\ \hline \end{gathered}$	Wall Thickness in	Bend Radius in	Pole Grade
L1	97.50-50.79	46.71	3.42	18	16.0000	23.0500	0.1875	0.7500	A572-65
									(65 ksi)
L2	50.79-1.50	52.71		18	22.1588	30.0000	0.2500	1.0000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$

Tapered Pole Properties

Section	Tip Dia.	Area $i n^{2}$	$\begin{gathered} I \\ i n^{4} \end{gathered}$	in	C	I / C $i n^{3}$	$\begin{gathered} J \\ i n^{4} \end{gathered}$	$I t / Q$	$\begin{aligned} & w \\ & i n \\ & \text { in } \end{aligned}$	w / t
L1	16.2179	9.4104	297.2674	5.6134	8.1280	36.5733	594.9259	4.7061	2.4860	13.259
	23.3767	13.6060	898.4973	8.1162	11.7094	76.7330	1798.1770	6.8043	3.7268	19.876
L2	22.9787	17.3846	1054.2438	7.7776	11.2567	93.6550	2109.8748	8.6940	3.4600	13.84
	30.4242	23.6066	2639.6436	10.5612	15.2400	173.2050	5282.7605	11.8056	4.8400	19.36

Tower Elevation ft	Gusset Area (per face) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1 97.50-50.79				1	1	1.05			
L2 50.79-1.50				1	1	1.05			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque Calculation	Component Type	Placement ft	Total Number	Number Per Row	Start/End Position	Width or Diameter in	Perimeter in	Weight plf
Safety Line 3/8	A	No	Surface Ar (CaAa)	97.50-1.50	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	0.3750		0.22
*** Step Bolts	A	No	Surface Ar (CaAa)	97.50-1.50	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	0.6250		0.51
$* * *$ $* * *$ $1.6^{\prime \prime}$ (Dish Wireless) $* * *$	C	No	$\begin{aligned} & \text { Surface Ar } \\ & (\mathrm{CaAa}) \end{aligned}$	90.00-3.00	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	1.6000		1.35

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Component Type	Placement ft	Total Number		$\begin{aligned} & C_{A} A_{A} \\ & f t^{2} / f t \end{aligned}$	Weight $p l f$
$\begin{aligned} & \text { *** } \\ & * * * \end{aligned}$									
7/8" Coax	C	No	No	Inside Pole	97.50-3.00	1	No Ice	0.00	1.54

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & \\ & 3 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	Component Type	Placement $f t$	Total Number		$\begin{gathered} C_{A} A_{A} \\ f t^{2} / f t \end{gathered}$	Weight plf
(T-Mobile)							1/2" Ice	0.00	1.54
***							$1{ }^{\prime \prime}$ Ice	0.00	1.54
1-1/4" Coax	C	No	No	Inside Pole	97.50-3.00	1	No Ice	0.00	0.50
(T-Mobile)							1/2" Ice	0.00	0.50
							$1{ }^{\prime \prime}$ Ice	0.00	0.50

1-5/8" Coax	C	No	No	Inside Pole	97.50-3.00	1	No Ice	0.00	0.82
(T-Mobile)							1/2" Ice	0.00	0.82
							$1{ }^{\prime \prime}$ Ice	0.00	0.82

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation $f t$	Face	A_{R}	A_{F}	$C_{A} A_{A}$ In Face	$C_{A} A_{A}$ Out Face	Weight
	$f t$		$f t^{2}$	$f t^{2}$	$f t^{2}$	$f t^{2}$	$l b$
L1	$97.50-50.79$	A	0.000	0.000	4.671	0.000	34.19
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	6.274	0.000	186.52
L2	$50.79-1.50$	A	0.000	0.000	4.929	0.000	36.08
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	7.646	0.000	201.20

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation $f t$	Face or Leg	Ice Thickness in	A_{R}	A_{F}	$C_{A} A_{A}$ In Face	$C_{A} A_{A}$ Out Face	Weight
	ft	ft		$f t^{2}$	$f t^{2}$	$f t^{2}$	lb	
L1	$97.50-50.79$	A	0.920	0.000	0.000	21.868	0.000	183.40
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	13.491	0.000	297.65
L2	$50.79-1.50$	A	0.831	0.000	0.000	23.076	0.000	193.53
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	16.444	0.000	336.64

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$	$C P_{Z}$
			Ice	Ice	
	$f t$	in	in	in	in
L1	$97.50-50.79$	-0.6037	0.6640	-1.3903	0.2698
L2	$50.79-1.50$	-0.6189	0.7909	-1.4956	0.4122

[^3]

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	K_{a} Ice
L1	1	Safety Line 3/8	$50.79-97.50$	1.0000	1.0000
L1	3	Step Bolts	$50.79-97.50$	1.0000	1.0000
L1	$1.6^{\prime \prime}$	$50.79-90.00$	1.0000	1.0000	
L2	6	Safety Line 3/8	$1.50-50.79$	1.0000	1.0000
L2	1	Step Bolts	$1.50-50.79$	1.0000	1.0000
L2	$1.6^{\prime \prime}$	$3.00-50.79$	1.0000	1.0000	

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
○
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline \multicolumn{10}{|l|}{****}

\hline \multirow[t]{3}{*}{Lighting $\operatorname{Rod} 5 / 8^{\prime \prime} \times 7$ '} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{97.50} \& No Ice \& 0.53 \& 0.53 \& 30.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.24 \& 1.24 \& 35.42

\hline \& \& \& 5.00 \& \& \& 1 " Ice \& 1.97 \& 1.97 \& 45.35

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{| RDIDC-9181-PF-48 |
| :--- |
| (Dish Wireless) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 0.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 0.93 \& 1.07 \& 21.85

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.06 \& 1.20 \& 38.15

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.19 \& 1.35 \& 57.11

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{TA08025-B604 (Dish Wireless)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 1.96 \& 1.03 \& 63.93

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.14 \& 1.17 \& 80.68

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.32 \& 1.31 \& 100.13

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{TA08025-B604 (Dish Wireless)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 1.96 \& 1.03 \& 63.93

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.14 \& 1.17 \& 80.68

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.32 \& 1.31 \& 100.13

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{TA08025-B604 (Dish Wireless)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 1.96 \& 1.03 \& 63.93

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.14 \& 1.17 \& 80.68

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.32 \& 1.31 \& 100.13

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{MX08FRO665-20_V0F (Dish Wireless)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 12.49 \& 5.87 \& 54.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.99 \& 6.32 \& 127.79

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 13.49 \& 6.79 \& 208.26

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{MX08FRO665-20 V0F (Dish Wireless)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 12.49 \& 5.87 \& 54.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.99 \& 6.32 \& 127.79

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 13.49 \& 6.79 \& 208.26

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{| MX08FRO665-20_V0F |
| :--- |
| (Dish Wireless) |} \& \multirow[t]{2}{*}{C} \& \multirow[t]{2}{*}{From Leg} \& 3.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{90.00} \& No Ice \& 12.49 \& 5.87 \& 54.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.99 \& 6.32 \& 127.79

\hline
\end{tabular}

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & \\ & 5 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 19:35:07 02/23/21 } \end{array}$
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

tnxTOWer	Job	Page	
NC			
Phone: engineering@sgstowers.com FAX:	Project	SGS\# 2101548	6 of 24
	Client	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

$l b$

\hline $$
\begin{gathered}
* * * \\
\text { TA08025-B604 } \\
\text { (Dish Wireless) }
\end{gathered}
$$ \& C \& From Leg \& \[

$$
\begin{aligned}
& 2.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.96 \\
& 2.14 \\
& 2.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.03 \\
& 1.17 \\
& 1.31
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
63.93 \\
80.68 \\
100.13
\end{gathered}
$$
\]

\hline $$
\begin{aligned}
& \text { MX08FRO665-20_V0F } \\
& \text { (Dish Wireless) }
\end{aligned}
$$ \& A \& From Leg \& \[

$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[

$$
\begin{aligned}
& 12.49 \\
& 12.99 \\
& 13.49
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.87 \\
& 6.32 \\
& 6.79
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
54.00 \\
127.79 \\
208.26
\end{gathered}
$$
\]

\hline MX08FRO665-20_V0F (Dish Wireless) \& B \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 12.49 \\
& 12.99 \\
& 13.49
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.87 \\
& 6.32 \\
& 6.79
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
54.00 \\
127.79 \\
208.26
\end{gathered}
$$
\]

\hline $$
\begin{gathered}
* * * \\
\text { MX08FRO665-20_V0F } \\
\text { (Dish Wireless) }
\end{gathered}
$$ \& C \& From Leg \& \[

$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 12.49 \\
& 12.99 \\
& 13.49
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.87 \\
& 6.32 \\
& 6.79
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
54.00 \\
127.79 \\
208.26
\end{gathered}
$$
\]

\hline $$
\begin{gathered}
* * * \\
\text { TA08025-B605 } \\
\text { (Dish Wireless) }
\end{gathered}
$$ \& A \& From Leg \& \[

$$
\begin{aligned}
& 2.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.96 \\
& 2.14 \\
& 2.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.19 \\
& 1.33 \\
& 1.48
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
74.95 \\
92.92 \\
113.67
\end{gathered}
$$
\]

\hline | TA08025-B605 |
| :--- |
| (Dish Wireless) | \& B \& From Leg \& \[

$$
\begin{aligned}
& 2.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.96 \\
& 2.14 \\
& 2.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.19 \\
& 1.33 \\
& 1.48
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
74.95 \\
92.92 \\
113.67
\end{gathered}
$$
\]

\hline TA08025-B605 (Dish Wireless) \& C \& From Leg \& $$
\begin{aligned}
& 2.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 1.96 \\
& 2.14 \\
& 2.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.19 \\
& 1.33 \\
& 1.48
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
74.95 \\
92.92 \\
113.67
\end{gathered}
$$
\]

\hline | ****Dish Reserved Loading*** |
| :--- |
| Dish $1 / 3$ of Remainder Reserved (Dish Wireless) | \& A \& From Leg \& \[

$$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[

$$
\begin{aligned}
& 6.40 \\
& 7.00 \\
& 7.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.20 \\
& 3.80 \\
& 4.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 140.00 \\
& 280.00 \\
& 420.00
\end{aligned}
$$
\]

\hline Dish $1 / 3$ of Remainder Reserved (Dish Wireless) \& B \& From Leg \& \[
$$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 6.40 \\
& 7.00 \\
& 7.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.20 \\
& 3.80 \\
& 4.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 140.00 \\
& 280.00 \\
& 420.00
\end{aligned}
$$
\]

\hline Dish 1/3 of Remainder Reserved (Dish Wireless) \& C \& From Leg \& $$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00 \\
& \hline
\end{aligned}
$$ \& 0.0000 \& 90.00 \& No Ice 1/2" Ice 1" Ice \& \[

$$
\begin{aligned}
& 6.40 \\
& 7.00 \\
& 7.60 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.20 \\
& 3.80 \\
& 4.40 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 140.00 \\
& 280.00 \\
& 420.00 \\
& \hline
\end{aligned}
$$
\]

\hline
\end{tabular}

Tower Pressures - No Ice

$$
G_{H}=1.100
$$

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & 7 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
\(f t\)
\end{tabular} \& \(z\)
\(f t\) \& \(K_{Z}\) \& \[
q_{z}
\]
\[
p s f
\] \& \(A_{G}\)

$f t^{2}$ \& F
a
c
e \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& \[
$$
\begin{gathered}
L e g \\
\%
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| In |
| Face |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline \multirow[t]{3}{*}{L1 97.50-50.79} \& \multirow[t]{3}{*}{73.13} \& \multirow[t]{3}{*}{1.185} \& \multirow[t]{3}{*}{34} \& \multirow[t]{3}{*}{77.061} \& A \& 0.000 \& 77.061 \& \multirow[t]{3}{*}{77.061} \& 100.00 \& 4.671 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 77.061 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 77.061 \& \& 100.00 \& 6.274 \& 0.000

\hline \multirow[t]{3}{*}{L2 50.79-1.50} \& \multirow[t]{3}{*}{26.20} \& \multirow[t]{3}{*}{0.955} \& \multirow[t]{3}{*}{27} \& \multirow[t]{3}{*}{109.676} \& A \& 0.000 \& 109.676 \& \multirow[t]{3}{*}{109.676} \& 100.00 \& 4.929 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 109.676 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 109.676 \& \& 100.00 \& 7.646 \& 0.000

\hline
\end{tabular}

Tower Pressure - With Ice

$G_{H}=1.100$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation
\(\qquad\) \\
\(f t\)
\end{tabular} \& \(z\)
\(f t\) \& \(K_{Z}\) \& \[
q_{z}
\]
\[
p s f
\] \& \(t_{Z}\)
in \& \(A_{G}\)

$f t^{2}$ \& F
a
c
e \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& \[
$$
\begin{gathered}
\text { Leg } \\
\%
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { In } \\
\text { Face } \\
{f t^{2}}^{2}
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline \multirow[t]{3}{*}{L1 97.50-50.79} \& \multirow[t]{3}{*}{73.13} \& \multirow[t]{3}{*}{1.185} \& \multirow[t]{3}{*}{4} \& \multirow[t]{3}{*}{0.9204} \& \multirow[t]{3}{*}{84.226} \& A \& 0.000 \& 84.226 \& \multirow[t]{3}{*}{84.226} \& 100.00 \& 21.868 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 84.226 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 0.000 \& 84.226 \& \& 100.00 \& 13.491 \& 0.000

\hline \multirow[t]{3}{*}{L2 50.79-1.50} \& \multirow[t]{3}{*}{26.20} \& \multirow[t]{3}{*}{0.955} \& \multirow[t]{3}{*}{3} \& \multirow[t]{3}{*}{0.8306} \& \multirow[t]{3}{*}{117.237} \& A \& 0.000 \& 117.237 \& \multirow[t]{3}{*}{117.237} \& 100.00 \& 23.076 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 117.237 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 0.000 \& 117.237 \& \& 100.00 \& 16.444 \& 0.000

\hline
\end{tabular}

Tower Pressure - Service

$$
G_{H}=1.100
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
ft
\end{tabular} \& \(z\)
\(f t\) \& \(K_{Z}\) \& \[
q_{z}
\]
\[
p s f
\] \& \(A_{G}\)

$f t^{2}$ \& | F |
| :--- |
| a |
| c |
| e | \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& Leg \% \& | $C_{A} A_{A}$ |
| :--- |
| In |
| Face |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline \multirow[t]{3}{*}{L1 97.50-50.79} \& \multirow[t]{3}{*}{73.13} \& \multirow[t]{3}{*}{1.185} \& \multirow[t]{3}{*}{9} \& \multirow[t]{3}{*}{77.061} \& A \& 0.000 \& 77.061 \& \multirow[t]{3}{*}{77.061} \& 100.00 \& 4.671 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 77.061 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 77.061 \& \& 100.00 \& 6.274 \& 0.000

\hline \multirow[t]{3}{*}{L2 50.79-1.50} \& \multirow[t]{3}{*}{26.20} \& \multirow[t]{3}{*}{0.955} \& \multirow[t]{3}{*}{7} \& \multirow[t]{3}{*}{109.676} \& A \& 0.000 \& 109.676 \& \multirow[t]{3}{*}{109.676} \& 100.00 \& 4.929 \& 0.000

\hline \& \& \& \& \& B \& 0.000 \& 109.676 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 109.676 \& \& 100.00 \& 7.646 \& 0.000

\hline
\end{tabular}

Tower Forces - No Ice - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
\(f t\)
\(\qquad\)
\end{tabular} \& Add Weight
\[
l b
\] \& Self Weight
\[
l b
\] \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline L1 \& \multirow[t]{3}{*}{220.72} \& \multirow[t]{3}{*}{1920.63} \& A \& 1 \& 0.73 \& \multirow[t]{3}{*}{34} \& 1 \& 1 \& 77.061 \& \multirow[t]{3}{*}{2127.44} \& \multirow[t]{3}{*}{45.55} \& \multirow[t]{3}{*}{C}

\hline 97.50-50.79 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline \multirow[t]{3}{*}{L2 50.79-1.50} \& \multirow[t]{3}{*}{237.28} \& \multirow[t]{3}{*}{3859.93} \& A \& 1 \& 0.73 \& \multirow[t]{3}{*}{27} \& 1 \& 1 \& 109.676 \& \multirow[t]{3}{*}{2397.60} \& \multirow[t]{3}{*}{48.64} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline
\end{tabular}

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & 8 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	$\begin{aligned} & \hline \text { Date } \\ & \text { 19:35:07 02/23/21 } \end{aligned}$
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section Elevation $f t$	Add Weight lb	Self Weight lb	F a c e	e	C_{F}	q_{z} $p s f$	D_{F}	D_{R}	$\overline{A_{E}}$ $f t^{2}$	F lb	w $p l f$	Ctrl. Face
Sum Weight:	457.99	5780.55						OTM	$\begin{array}{r} 211597.60 \\ 1 \mathrm{~b}-\mathrm{ft} \end{array}$	4525.04		

Tower Forces - No Ice - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& Add Weight
\(\qquad\) lb \& Self Weight
\(\qquad\) lb \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\[
q_{z}
\] \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \[
\overline{A_{E}}
\]
\[
f t^{2}
\] \& \(F\)

$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& 220.72 \& 1920.63 \& A \& 1 \& 0.73 \& 34 \& 1 \& 1 \& 77.061 \& 2127.44 \& 45.55 \& C

\hline 97.50-50.79 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline L2 50.79-1.50 \& 237.28 \& 3859.93 \& A \& 1 \& 0.73 \& 27 \& 1 \& 1 \& 109.676 \& 2397.60 \& 48.64 \& C

\hline \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline Sum Weight: \& 457.99 \& 5780.55 \& \& \& \& \& \& OTM \& $$
211597.60
$$

$$
\mathrm{lb}-\mathrm{ft}
$$ \& 4525.04 \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
\(f t\)
\end{tabular} \& Add Weight
\[
l b
\] \& \begin{tabular}{l}
Self Weight \\
lb
\end{tabular} \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
psf
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \[
\overline{A_{E}}
\]
\[
f t^{2}
\] \& \(F\)

$l b$ \& w
$p l f$ \& Ctrl. Face

\hline L1 \& 220.72 \& 1920.63 \& A \& 1 \& 0.73 \& 34 \& 1 \& 1 \& 77.061 \& 2127.44 \& 45.55 \& C

\hline 97.50-50.79 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline L2 50.79-1.50 \& 237.28 \& 3859.93 \& A \& 1 \& 0.73 \& 27 \& 1 \& 1 \& 109.676 \& 2397.60 \& 48.64 \& C

\hline \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline Sum Weight: \& 457.99 \& 5780.55 \& \& \& \& \& \& OTM \& 211597.60 \& 4525.04 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-ft \& \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& Add Weight
\(\qquad\) \(l b\) \& Self Weight
\(\qquad\) \(l b\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\[
q_{z}
\] \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& \multirow[t]{3}{*}{481.05} \& \multirow[t]{3}{*}{3005.58} \& A \& 1 \& 1.2 \& \multirow[t]{3}{*}{4} \& 1 \& 1 \& 84.226 \& \multirow[t]{2}{*}{478.95} \& \multirow[t]{2}{*}{10.25} \& \multirow[t]{2}{*}{C}

\hline 97.50-50.79 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 84.226 \& \& \&

\hline \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 84.226 \& \& \&

\hline L2 50.79-1.50 \& 530.17 \& 5232.67 \& A \& 1 \& 1.2 \& \multirow[t]{2}{*}{3} \& 1 \& 1 \& 116.500 \& \multirow[t]{2}{*}{524.58} \& \multirow[t]{2}{*}{10.64} \& \multirow[t]{2}{*}{C}

\hline \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 116.500 \& \& \&

\hline
\end{tabular}

tnxTower	Job	SGS\# 2101548	Page
			9 of 24
SGS TowersChapell Hill,NCPhone: engineering@sgstowers.comFAX:	Project	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section Elevation ft	Add Weight $l b$	Self Weight $l b$	$\begin{aligned} & \hline F \\ & a \\ & c \\ & e \end{aligned}$	e	C_{F}	q_{z} $p s f$	D_{F}	D_{R}	A_{E} $f t^{2}$	F lb	w $p l f$	Ctrl. Face
Sum Weight:	1011.22	8238.25	C	1	1.2		1	$\begin{array}{r} 1 \\ \text { OTM } \end{array}$	$\begin{array}{r} 116.500 \\ 47261.79 \\ \mathrm{lb}-\mathrm{ft} \end{array}$	1003.53		

Tower Forces - With Ice - Wind 60 To Face

Section Elevation ft	Add Weight lb	Self Weight lb	F a c e	e	C_{F}	q_{z} psf	D_{F}	D_{R}	$\begin{gathered} A_{E} \\ f t^{2} \end{gathered}$	F $l b$	w plf	Ctrl. Face
L1	481.05	3005.58	A	1	1.2	4	1	1	84.226	478.95	10.25	C
97.50-50.79			B	1	1.2		1	1	84.226			
			C	1	1.2		1	1	84.226			
L2 50.79-1.50	530.17	5232.67	A	1	1.2	3	1	1	116.500	524.58	10.64	C
			B	1	1.2		1	1	116.500			
			C	1	1.2		1	1	116.500			
Sum Weight:	1011.22	8238.25						OTM	47261.79	1003.53		
									lb-ft			

Tower Forces - With Ice - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section \\
Elevation \\
ft
\end{tabular} \& \begin{tabular}{l}
Add \\
Weight \\
lb
\end{tabular} \& Self Weight lb \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

plf \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& 481.05 \& 3005.58 \& A \& 1 \& 1.2 \& 4 \& 1 \& 1 \& 84.226 \& 478.95 \& 10.25 \& C

\hline 97.50-50.79 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 84.226 \& \& \&

\hline \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 84.226 \& \& \&

\hline L2 50.79-1.50 \& 530.17 \& 5232.67 \& A \& 1 \& 1.2 \& 3 \& 1 \& 1 \& 116.500 \& 524.58 \& 10.64 \& C

\hline \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 116.500 \& \& \&

\hline \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 116.500 \& \& \&

\hline Sum Weight: \& 1011.22 \& 8238.25 \& \& \& \& \& \& OTM \& 47261.79 \& 1003.53 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-ft \& \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind Normal To Face

Section Elevation $f t$	Add Weight $l b$	Self Weight $l b$	$\begin{aligned} & F \\ & a \\ & c \\ & e \\ & \hline \end{aligned}$	e	C_{F}	q_{z} $p s f$	D_{F}	D_{R}	$\begin{gathered} A_{E} \\ \\ f t^{2} \\ \hline \end{gathered}$	F $l b$	w $p l f$	Ctrl. Face
L1	220.72	1920.63	A	1	0.73	9	1	1	77.061	564.90	12.09	C
97.50-50.79			B	1	0.73		1	1	77.061			
			C	1	0.73		1	1	77.061			
L2 50.79-1.50	237.28	3859.93	A	1	0.73	7	1	1	109.676	636.64	12.92	C

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } 10 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
$N C$ Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section Elevation \qquad	Add Weight \qquad $l b$	Self Weight \qquad $l b$	$\begin{aligned} & \hline F \\ & a \\ & c \\ & e \end{aligned}$	e	C_{F}	q_{z} $p s f$	D_{F}	D_{R}	A_{E} $f t^{2}$	F $l b$	w $p l f$	Ctrl. Face
Sum Weight:	457.99	5780.55	B	1	0.73 0.73		1	1 1 OTM	$\begin{array}{r} 109.676 \\ 109.676 \\ 56185.99 \\ \mathrm{lb}-\mathrm{ft} \end{array}$	1201.54		

Tower Forces - Service - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\[
f t
\] \& Add Weight lb \& \begin{tabular}{l}
Self Weight \\
lb
\end{tabular} \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(p s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F

$l b$ \& w
$p l f$ \& Ctrl. Face

\hline L1 \& 220.72 \& 1920.63 \& A \& 1 \& 0.73 \& 9 \& 1 \& 1 \& 77.061 \& 564.90 \& 12.09 \& C

\hline 97.50-50.79 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 77.061 \& \& \&

\hline L2 50.79-1.50 \& 237.28 \& 3859.93 \& A \& 1 \& 0.73 \& 7 \& 1 \& 1 \& 109.676 \& 636.64 \& 12.92 \& C

\hline \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 109.676 \& \& \&

\hline Sum Weight: \& 457.99 \& 5780.55 \& \& \& \& \& \& OTM \& 56185.99 \& 1201.54 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-ft \& \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind 90 To Face

Section Elevation \qquad	Add Weight $l b$	Self Weight \qquad $l b$	F a c e	e	C_{F}	q_{z} $p s f$	D_{F}	D_{R}	$\overline{A_{E}}$ $f t^{2}$	F $l b$	w $p l f$	Ctrl. Face
L1	220.72	1920.63	A	1	0.73	9	1	1	77.061	564.90	12.09	C
97.50-50.79			B	1	0.73		1	1	77.061			
			C	1	0.73		1	1	77.061			
L2 50.79-1.50	237.28	3859.93	A	1	0.73	7	1	1	109.676	636.64	12.92	C
			B	1	0.73		1	1	109.676			
			C	1	0.73		1	1	109.676			
Sum Weight:	457.99	5780.55						OTM	56185.99	1201.54		
									lb-ft			

Force Totals

| $\begin{array}{c}\text { Load } \\ \text { Case }\end{array}$ | $\begin{array}{c}\text { Vertical } \\ \text { Forces }\end{array}$ | $\begin{array}{c}\text { Sum of } \\ \text { Forces } \\ X\end{array}$ | $\begin{array}{c}\text { Sum of } \\ \text { Forces } \\ Z\end{array}$ | $\begin{array}{c}\text { Sum of } \\ \text { Overturning } \\ \text { Moments } M_{x} \\ l b-f t\end{array}$ | $\begin{array}{c}\text { Sum of } \\ \text { Overturning } \\ \text { Moments, } M_{z} \\ l b-f t\end{array}$ | $\begin{array}{c}\text { Sum of Torques } \\ \\ \end{array} \quad l b$ |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | $\left.\begin{array}{lr}l b\end{array}\right]$

Load Case	Vertical Forces lb	Sum of Forces X $l b$	Sum of Forces Z $l b$	Sum of Overturning Moments, M_{x} $l b-f t$	Sum of Overturning Moments, M_{z} lb-ft	Sum of Torques $l b-f t$
Total Weight	13931.84			-37.47	59.77	
Wind 0 deg - No Ice		0.00	-12394.63	-939487.16	59.77	0.00
Wind 30 deg - No Ice		6199.43	-10734.06	-813624.77	-469852.15	-51.28
Wind 60 deg - No Ice		10737.72	-6197.31	-469762.32	-813851.56	-88.82
Wind 90 deg - No Ice		12398.85	0.00	-37.47	-939764.08	-102.56
Wind 120 deg - No Ice		10737.72	6197.31	469687.37	-813851.56	-88.82
Wind 150 deg - No Ice		6199.43	10734.06	813549.82	-469852.15	-51.28
Wind 180 deg - No Ice		0.00	12394.63	939412.21	59.77	0.00
Wind 210 deg - No Ice		-6199.43	10734.06	813549.82	469971.69	51.28
Wind 240 deg - No Ice		-10737.72	6197.31	469687.37	813971.09	88.82
Wind 270 deg - No Ice		-12398.85	0.00	-37.47	939883.61	102.56
Wind 300 deg - No Ice		-10737.72	-6197.31	-469762.32	813971.09	88.82
Wind 330 deg - No Ice		-6199.43	-10734.06	-813624.77	469971.69	51.28
Member Ice	2457.69					
Total Weight Ice	30464.17			-6.70	320.17	
Wind 0 deg - Ice		0.00	-2253.92	-163408.26	320.17	0.00
Wind 30 deg - Ice		1127.27	-1951.95	-141516.60	-81407.73	-19.67
Wind 60 deg - Ice		1952.49	-1126.96	-81707.48	-141236.70	-34.07
Wind 90 deg - Ice		2254.54	0.00	-6.70	-163135.63	-39.35
Wind 120 deg - Ice		1952.49	1126.96	81694.09	-141236.70	-34.07
Wind 150 deg - Ice		1127.27	1951.95	141503.21	-81407.73	-19.67
Wind 180 deg - Ice		0.00	2253.92	163394.87	320.17	0.00
Wind 210 deg - Ice		-1127.27	1951.95	141503.21	82048.06	19.67
Wind 240 deg - Ice		-1952.49	1126.96	81694.09	141877.04	34.07
Wind 270 deg - Ice		-2254.54	0.00	-6.70	163775.96	39.35
Wind 300 deg - Ice		-1952.49	-1126.96	-81707.48	141877.04	34.07
Wind 330 deg - Ice		-1127.27	-1951.95	-141516.60	82048.06	19.67
Total Weight	13931.84			-37.47	59.77	
Wind 0 deg - Service		0.00	-3291.17	-249579.82	0.00	0.00
Wind 30 deg - Service		1646.15	-2850.24	-216159.29	-124776.79	-13.62
Wind 60 deg - Service		2851.21	-1645.59	-124852.71	-216119.73	-23.58
Wind 90 deg - Service		3292.30	0.00	-125.60	-249553.57	-27.23
Wind 120 deg - Service		2851.21	1645.59	124601.51	-216119.73	-23.58
Wind 150 deg - Service		1646.15	2850.24	215908.09	-124776.79	-13.62
Wind 180 deg - Service		0.00	3291.17	249328.62	0.00	0.00
Wind 210 deg - Service		-1646.15	2850.24	215908.09	124776.79	13.62
Wind 240 deg - Service		-2851.21	1645.59	124601.51	216119.73	23.58
Wind 270 deg - Service		-3292.30	0.00	-125.60	249553.57	27.23
Wind 300 deg - Service		-2851.21	-1645.59	-124852.71	216119.73	23.58
Wind 330 deg - Service		-1646.15	-2850.24	-216159.29	124776.79	13.62

Load Combinations

Comb. No.		Description
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 60 deg - No Ice	
7	0.9 Dead+1.0 Wind 60 deg - No Ice	
8	1.2 Dead+1.0 Wind 90 deg - No Ice	
9	0.9 Dead+1.0 Wind 90 deg - No Ice	
10	1.2 Dead+1.0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	

Comb. No.	Description
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0$ Ice+1.0 Temp
29	1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$ Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind $120 \mathrm{deg}+1.0$ Ice+1.0 Temp
32	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp
33	1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0$ Ice+1.0 Temp
34	1.2 Dead+1.0 Wind $210 \mathrm{deg}+1.0$ Ice+1.0 Temp
35	1.2 Dead+1.0 Wind $240 \mathrm{deg}+1.0$ Ice+1.0 Temp
36	1.2 Dead+1.0 Wind $270 \mathrm{deg}+1.0$ Ice+1.0 Temp
37	1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0$ Ice+1.0 Temp
38	1.2 Dead+1.0 Wind $330 \mathrm{deg}+1.0$ Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial $l b$	Major Axis Moment $l b-f t$	Minor Axis Moment $l b-f t$
L1	97.5-50.79	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-26353.11	133.40	163.46
			Max. Mx	20	-10483.11	409666.71	122.53
			Max. My	2	-10483.94	31.98	409591.46
			Max. Vy	20	-10994.49	409666.71	122.53
			Max. Vx	2	-10989.92	31.98	409591.46
			Max. Torque	20			-122.49
L2	50.79-1.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-33345.79	337.99	23.26
			Max. Mx	20	-16686.66	1031731.55	59.90
			Max. My	2	-16686.68	78.95	1031308.50
			Max. Vy	20	-12441.28	1031731.55	59.90
			Max. Vx	2	-12437.04	78.95	1031308.50
			Max. Torque	20			-120.95

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & 13 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 19:35:07 02/23/21 } \end{array}$
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Section No. \& Elevation \(f t\) \& Component Type \& Condition \& \begin{tabular}{l}
Gov. \\
Load \\
Comb.
\end{tabular} \& Axial

$l b$ \& Major Axis Moment $l b-f t$ \& Minor Axis Moment $l b-f t$

\hline
\end{tabular}

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical $l b$	$\begin{gathered} \text { Horizontal, } X \\ l b \end{gathered}$	Horizontal, Z $l b$
Pole	Max. Vert	36	33345.79	2254.74	0.00
	Max. H_{x}	20	16718.21	12398.86	0.00
	Max. H_{z}	2	16718.21	0.00	12394.63
	Max. M_{x}	2	1031308.50	0.00	12394.63
	Max. M_{z}	8	1031575.43	-12398.86	0.00
	Max. Torsion	8	119.76	-12398.86	0.00
	Min. Vert	25	12538.65	6199.43	10734.06
	Min. H_{x}	8	16718.21	-12398.86	0.00
	Min. H_{z}	14	16718.21	0.00	-12394.63
	Min. M_{x}	14	-1031183.63	0.00	-12394.63
	Min. M_{z}	20	-1031731.55	12398.86	0.00
	Min. Torsion	20	-119.76	12398.86	0.00

Tower Mast Reaction Summary

Load Combination	Vertical lb	Shear ${ }_{x}$ $l b$	Shear $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead Only	13931.84	0.00	0.00	-37.47	59.77	0.00
1.2 Dead+1.0 Wind 0 deg - No	16718.21	-0.00	-12394.63	-1031308.50	78.95	-0.01
Ice						
0.9 Dead+1.0 Wind 0 deg - No	12538.65	-0.00	-12394.63	-1005100.56	57.66	-0.01
Ice						
1.2 Dead+1.0 Wind 30 deg - No	16718.20	6199.43	-10734.06	-893158.95	-515758.14	-59.90
Ice						
0.9 Dead+1.0 Wind 30 deg - No	12538.65	6199.43	-10734.06	-870449.61	-502673.60	-57.10
Ice						
1.2 Dead+1.0 Wind 60 deg - No	16718.20	10737.72	-6197.31	-515689.39	-893374.49	-103.77
Ice						
0.9 Dead+1.0 Wind 60 deg - No	12538.65	10737.72	-6197.31	-502570.48	-870696.19	-98.99
Ice						
1.2 Dead+1.0 Wind 90 deg - No	16718.21	12398.86	-0.00	-59.81	-1031575.43	-119.76
Ice						
0.9 Dead+1.0 Wind 90 deg - No	12538.65	12398.85	-0.00	-41.08	-1005397.75	-114.21
Ice						
1.2 Dead+1.0 Wind 120 deg -	16718.20	10737.72	6197.31	515568.48	-893372.20	-103.64
No Ice						
0.9 Dead+1.0 Wind 120 deg -	12538.65	10737.72	6197.31	502487.43	-870694.63	-98.82
No Ice						
1.2 Dead+1.0 Wind 150 deg -	16718.20	6199.43	10734.06	893035.39	-515755.85	-59.85
No Ice						
0.9 Dead+1.0 Wind 150 deg -	12538.65	6199.43	10734.06	870364.76	-502672.04	-57.10
No Ice						
1.2 Dead+1.0 Wind 180 deg -	16718.21	-0.00	12394.63	1031183.63	78.95	0.01
No Ice						
0.9 Dead+1.0 Wind 180 deg -	12538.65	-0.00	12394.63	1005014.80	57.66	0.01
No Ice						

Load Combination	Vertical $l b$	Shear $_{x}$ $l b$	Shear ${ }_{z}$ lb	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
1.2 Dead+1.0 Wind 210 deg -	16718.20	-6199.43	10734.06	893034.63	515913.30	59.87
No Ice						
0.9 Dead+1.0 Wind 210 deg -	12538.65	-6199.43	10734.06	870364.25	502787.07	57.12
No Ice						
1.2 Dead+1.0 Wind 240 deg -	16718.20	-10737.72	6197.31	515567.72	893528.76	103.65
No Ice						
0.9 Dead+1.0 Wind 240 deg -	12538.65	-10737.72	6197.31	502486.92	870809.07	98.83
No Ice						
1.2 Dead+1.0 Wind 270 deg -	16718.21	-12398.86	-0.00	-59.81	1031731.55	119.76
No Ice						
0.9 Dead+1.0 Wind 270 deg -	12538.65	-12398.85	-0.00	-41.08	1005511.90	114.21
No Ice						
1.2 Dead+1.0 Wind 300 deg -	16718.20	-10737.72	-6197.31	-515688.62	893531.05	103.76
No Ice						
0.9 Dead+1.0 Wind 300 deg -	12538.65	-10737.72	-6197.31	-502569.97	870810.63	98.99
No Ice						
1.2 Dead+1.0 Wind 330 deg -	16718.20	-6199.43	-10734.06	-893158.18	515915.59	59.88
No Ice						
0.9 Dead+1.0 Wind 330 deg -	12538.65	-6199.43	-10734.06	-870449.10	502788.63	57.09
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	33345.79	-0.00	-0.00	-23.26	337.99	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	33345.79	-0.00	-2254.12	-210555.67	432.90	0.01
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	33345.79	1127.37	-1952.13	-182358.57	-104836.37	-22.81
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	33345.79	1952.66	-1127.06	-105322.21	-181898.19	-39.54
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	33345.79	2254.74	-0.00	-88.47	-210104.19	-45.64
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	33345.79	1952.66	1127.06	105144.73	-181897.26	-39.51
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	33345.79	1127.37	1952.13	182180.03	-104835.44	-22.82
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	33345.79	-0.00	2254.12	210376.60	432.90	0.02
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	33345.79	-1127.37	1952.13	182179.81	105701.10	22.85
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	33345.79	-1952.66	1127.06	105144.52	182762.66	39.54
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	33345.79	-2254.74	-0.00	-88.47	210969.46	45.67
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	33345.79	-1952.66	-1127.06	-105321.98	182763.59	39.56
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	33345.79	-1127.37	-1952.13	-182358.34	105702.03	22.83
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	13931.84	-0.00	-3291.17	-270479.09	64.95	-0.00
Dead+Wind 30 deg - Service	13931.84	1646.15	-2850.24	-234248.56	-135203.26	-15.92
Dead+Wind 60 deg - Service	13931.84	2851.21	-1645.59	-135264.89	-234226.36	-27.58
Dead+Wind 90 deg - Service	13931.84	3292.30	-0.00	-50.72	-270471.24	-31.84
Dead+Wind 120 deg - Service	13931.84	2851.21	1645.59	135163.37	-234226.23	-27.56
Dead+Wind 150 deg - Service	13931.84	1646.15	2850.24	234146.89	-135203.13	-15.92
Dead+Wind 180 deg - Service	13931.84	-0.00	3291.17	270377.34	64.95	0.00
Dead+Wind 210 deg - Service	13931.84	-1646.15	2850.24	234146.85	135333.01	15.92
Dead+Wind 240 deg - Service	13931.84	-2851.21	1645.59	135163.33	234356.06	27.57
Dead+Wind 270 deg - Service	13931.84	-3292.30	-0.00	-50.72	270601.04	31.84
Dead+Wind 300 deg - Service	13931.84	-2851.21	-1645.59	-135264.85	234356.19	27.58
Dead+Wind 330 deg - Service	13931.84	-1646.15	-2850.24	-234248.52	135333.14	15.92

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	PZ	PX	PY	$P Z$	
Comb.	$l b$						
1	0.00	-13931.84	0.00	0.00	13931.84	0.00	0.000\%
2	0.00	-16718.20	-12394.63	0.00	16718.21	12394.63	0.000\%
3	0.00	-12538.65	-12394.63	0.00	12538.65	12394.63	0.000\%
4	6199.43	-16718.20	-10734.06	-6199.43	16718.20	10734.06	0.000\%
5	6199.43	-12538.65	-10734.06	-6199.43	12538.65	10734.06	0.000\%
6	10737.72	-16718.20	-6197.31	-10737.72	16718.20	6197.31	0.000\%
7	10737.72	-12538.65	-6197.31	-10737.72	12538.65	6197.31	0.000\%
8	12398.85	-16718.20	0.00	-12398.86	16718.21	0.00	0.000\%
9	12398.85	-12538.65	0.00	-12398.85	12538.65	0.00	0.000\%
10	10737.72	-16718.20	6197.31	-10737.72	16718.20	-6197.31	0.000\%
11	10737.72	-12538.65	6197.31	-10737.72	12538.65	-6197.31	0.000\%
12	6199.43	-16718.20	10734.06	-6199.43	16718.20	-10734.06	0.000\%
13	6199.43	-12538.65	10734.06	-6199.43	12538.65	-10734.06	0.000\%
14	0.00	-16718.20	12394.63	0.00	16718.21	-12394.63	0.000\%
15	0.00	-12538.65	12394.63	0.00	12538.65	-12394.63	0.000\%
16	-6199.43	-16718.20	10734.06	6199.43	16718.20	-10734.06	0.000\%
17	-6199.43	-12538.65	10734.06	6199.43	12538.65	-10734.06	0.000\%
18	-10737.72	-16718.20	6197.31	10737.72	16718.20	-6197.31	0.000\%
19	-10737.72	-12538.65	6197.31	10737.72	12538.65	-6197.31	0.000\%
20	-12398.85	-16718.20	0.00	12398.86	16718.21	0.00	0.000\%
21	-12398.85	-12538.65	0.00	12398.85	12538.65	0.00	0.000\%
22	-10737.72	-16718.20	-6197.31	10737.72	16718.20	6197.31	0.000\%
23	-10737.72	-12538.65	-6197.31	10737.72	12538.65	6197.31	0.000\%
24	-6199.43	-16718.20	-10734.06	6199.43	16718.20	10734.06	0.000\%
25	-6199.43	-12538.65	-10734.06	6199.43	12538.65	10734.06	0.000\%
26	0.00	-33345.79	0.00	0.00	33345.79	0.00	0.000\%
27	0.00	-33345.79	-2253.92	0.00	33345.79	2254.12	0.001\%
28	1127.27	-33345.79	-1951.95	-1127.37	33345.79	1952.13	0.001\%
29	1952.49	-33345.79	-1126.96	-1952.66	33345.79	1127.06	0.001\%
30	2254.54	-33345.79	0.00	-2254.74	33345.79	0.00	0.001\%
31	1952.49	-33345.79	1126.96	-1952.66	33345.79	-1127.06	0.001\%
32	1127.27	-33345.79	1951.95	-1127.37	33345.79	-1952.13	0.001\%
33	0.00	-33345.79	2253.92	0.00	33345.79	-2254.12	0.001\%
34	-1127.27	-33345.79	1951.95	1127.37	33345.79	-1952.13	0.001\%
35	-1952.49	-33345.79	1126.96	1952.66	33345.79	-1127.06	0.001\%
36	-2254.54	-33345.79	0.00	2254.74	33345.79	0.00	0.001\%
37	-1952.49	-33345.79	-1126.96	1952.66	33345.79	1127.06	0.001\%
38	-1127.27	-33345.79	-1951.95	1127.37	33345.79	1952.13	0.001\%
39	0.00	-13931.84	-3291.17	0.00	13931.84	3291.17	0.000\%
40	1646.15	-13931.84	-2850.24	-1646.15	13931.84	2850.24	0.000\%
41	2851.21	-13931.84	-1645.59	-2851.21	13931.84	1645.59	0.000\%
42	3292.30	-13931.84	0.00	-3292.30	13931.84	0.00	0.000\%
43	2851.21	-13931.84	1645.59	-2851.21	13931.84	-1645.59	0.000\%
44	1646.15	-13931.84	2850.24	-1646.15	13931.84	-2850.24	0.000\%
45	0.00	-13931.84	3291.17	0.00	13931.84	-3291.17	0.000\%
46	-1646.15	-13931.84	2850.24	1646.15	13931.84	-2850.24	0.000\%
47	-2851.21	-13931.84	1645.59	2851.21	13931.84	-1645.59	0.000\%
48	-3292.30	-13931.84	0.00	3292.30	13931.84	0.00	0.000\%
49	-2851.21	-13931.84	-1645.59	2851.21	13931.84	1645.59	0.000\%
50	-1646.15	-13931.84	-2850.24	1646.15	13931.84	2850.24	0.000\%

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00024884
3	Yes	5	0.00000001	0.00002553
4	Yes	7	0.00000001	0.00018304
5	Yes	6	0.00000001	0.00051416
6	Yes	7	0.00000001	0.00018415
7	Yes	6	0.00000001	0.00051743
8	Yes	5	0.00000001	0.00027112
9	Yes	5	0.00000001	0.00005397
10	Yes	7	0.00000001	0.00018261
11	Yes	6	0.00000001	0.00051301
12	Yes	7	0.00000001	0.00018370
13	Yes	6	0.00000001	0.00051623
14	Yes	5	0.00000001	0.00024864
15	Yes	5	0.00000001	0.00002551
16	Yes	7	0.00000001	0.00018373
17	Yes	6	0.00000001	0.00051630
18	Yes	7	0.00000001	0.00018264
19	Yes	6	0.00000001	0.00051307
20	Yes	5	0.00000001	0.00027115
21	Yes	5	0.00000001	0.00005397
22	Yes	7	0.00000001	0.00018418
23	Yes	6	0.00000001	0.00051749
24	Yes	7	0.00000001	0.00018307
25	Yes	6	0.00000001	0.00051423
26	Yes	4	0.00000001	0.00000001
27	Yes	6	0.00047952	0.00029723
28	Yes	6	0.00047793	0.00056802
29	Yes	6	0.00047783	0.00057495
30	Yes	6	0.00047930	0.00029639
31	Yes	6	0.00047761	0.00056350
32	Yes	6	0.00047752	0.00056921
33	Yes	6	0.00047906	0.00029589
34	Yes	6	0.00047750	0.00057356
35	Yes	6	0.00047759	0.00056690
36	Yes	6	0.00047928	0.00029789
37	Yes	6	0.00047781	0.00057849
38	Yes	6	0.00047790	0.00057242
39	Yes	5	0.00000001	0.00001513
40	Yes	5	0.00000001	0.00035775
41	Yes	5	0.00000001	0.00036339
42	Yes	5	0.00000001	0.00001729
43	Yes	5	0.00000001	0.00035509
44	Yes	5	0.00000001	0.00036045
45	Yes	5	0.00000001	0.00001509
46	Yes	5	0.00000001	0.00036089
47	Yes	5	0.00000001	0.00035545
48	Yes	5	0.00000001	0.00001730
49	Yes	5	0.00000001	0.00036376
50	Yes	5	0.00000001	0.00035819

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load	Tilt	Twist
	ft	28.384	Comb.	\circ	\circ
L1	$97.5-50.79$		49	2.5211	0.0012

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	Deflection	Load	\circ	\circ	
	$f t$	in	Comb.	\circ	\circ
L2	$54.21-1.5$	8.739	48	1.5431	0.0004

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature $f t$
97.50	Lighting Rod 5/8" x 7^{\prime}	49	28.384	2.5211	0.0012	11573
90.00	RDIDC-9181-PF-48	49	24.508	2.3626	0.0011	7715

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz. Noflection	Gov. Load	Tilt	Twist
	in	It	Comb.	\circ	\circ
L1	$97.5-50.79$	108.284	20	9.6467	0.0047
L2	$54.21-1.5$	33.365	20	5.9004	0.0013

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature $f t$
97.50	Lighting Rod 5/8' x 7^{\prime}	20	108.284	9.6467	0.0047	3152
90.00	RDIDC-9181-PF-48	20	93.504	9.0392	0.0040	2100

Compression Checks

Pole Design Data									
Section No.	Elevation	Size	L	L_{u}	Kl/r		P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		ft	ft		$i n^{2}$	$l b$	$l b$	ϕP_{n}
L1	97.5-95.2216	TP23.05x16x0.1875	46.71	0.00	0.0	9.6151	-4944.00	562482.00	0.009
	$\begin{gathered} 95.2216- \\ 92.9432 \end{gathered}$					9.8197	-5037.11	574454.00	0.009
	$\begin{gathered} 92.9432- \\ 90.6647 \end{gathered}$					10.0244	-5134.05	586426.00	0.009
	90.6647 -					10.2290	-8173.79	598398.00	0.014
	$\begin{gathered} 88.3863 \\ 88.3863 \\ 86.1079 \end{gathered}$					10.4337	-8286.25	610371.00	0.014

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		in ${ }^{2}$	$l b$	$l b$	ϕP_{n}
11.8768 -						22.6880	-15683.60	1327250.00	0.012
9.28263									
9.28263 -						22.9942	-16014.10	1345160.00	0.012
6.68842									
6.68842 -						23.3004	-16348.50	1363070.00	0.012
4.09421									
4.09421-1.5						23.6066	-16686.70	1380990.00	0.012

Pole Bending Design Data

Section	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	Ratio No.	$f t$		$M_{u x}$	$M_{u y}$

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & 20 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Projec	BOE - Richard D Riddle School (US-MD-5072)	Date 19:35:07 02/23/21
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$M_{u y}$	$\phi M_{n y}$	Ratio $M_{u y}$
$f t$			$l b-f t$	$l b-f t$	$\phi M_{n x}$	$l b-f t$	$l b-f t$	$\phi M_{n y}$
	45.6016 -		535285.83	671944.17	0.797	0.00	671944.17	0.000
43.0074								
	43.0074 -		564986.67	692877.50	0.815	0.00	692877.50	0.000
40.4132								
	40.4132 -		594898.33	712718.33	0.835	0.00	712718.33	0.000
37.8189								
	37.8189 -		625013.33	732743.33	0.853	0.00	732743.33	0.000
35.2247								
	35.2247 -		655323.33	752950.00	0.870	0.00	752950.00	0.000
32.6305								
	32.6305 -		685820.83	773332.50	0.887	0.00	773332.50	0.000
30.0363								
	30.0363 -		716499.17	793888.33	0.903	0.00	793888.33	0.000
	27.4421							
	27.4421 -		747351.67	814610.83	0.917	0.00	814610.83	0.000
24.8479								
	24.8479 -		778370.83	835500.00	0.932	0.00	835500.00	0.000
22.2537								
	22.2537 -		809550.00	856541.67	0.945	0.00	856541.67	0.000
19.6595								
	19.6595 -		840883.33	877750.00	0.958	0.00	877750.00	0.000
17.0653 (${ }^{\text {c }}$								
	17.0653 -		872366.67	899100.00	0.970	0.00	899100.00	0.000
	14.4711							
	14.4711 -		903983.33	920600.00	0.982	0.00	920600.00	0.000
11.8768 (${ }^{\text {c }}$								
	11.8768 -		935733.33	942241.67	0.993	0.00	942241.67	0.000
9.28263								
	9.28263 -		967616.67	964025.00	1.004	0.00	964025.00	0.000
	6.68842 -		999616.67	985941.67	1.014	0.00	985941.67	0.000
4.09421								
	4.09421-1.5		1031733.33	1007983.33	1.024	0.00	1007983.33	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	Actual T_{u}	ϕT_{n}	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$
$f t$			$l b$	$l b$	ϕV_{n}	$l b-f t$	$l b-f t$	ϕT_{n}
L1	97.5-95.2216	TP23.05x16x0.1875	5163.21	168744.00	0.031	0.00	238755.83	0.000
	$\begin{gathered} 95.2216- \\ 92.9432 \end{gathered}$		5270.03	172336.00	0.031	0.00	249027.50	0.000
	$\begin{gathered} 92.9432- \\ 90.6647 \end{gathered}$		5376.49	175928.00	0.031	0.00	259515.83	0.000
	$\begin{gathered} 90.6647- \\ 88.3863 \end{gathered}$		9724.18	179520.00	0.054	0.01	270220.00	0.000
	$\begin{gathered} 88.3863- \\ 86.1079 \end{gathered}$		9824.31	183111.00	0.054	0.01	281140.83	0.000
	$\begin{gathered} 86.1079- \\ 83.8295 \end{gathered}$		9923.03	186703.00	0.053	61.24	292278.33	0.000
	$\begin{gathered} 83.8295- \\ 81.5511 \end{gathered}$		10017.20	190295.00	0.053	61.22	303631.67	0.000
	$\begin{gathered} 81.5511- \\ 79.2726 \end{gathered}$		10108.80	193886.00	0.052	61.19	315201.67	0.000
	$\begin{gathered} 79.2726- \\ 76.9942 \end{gathered}$		10197.90	197478.00	0.052	61.15	326988.33	0.000

Pole Interaction Design Data

Section No.	Elevation	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$	Comb. Stress	Allow. Stress	Criteria
	$f t$	ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L1	97.5-95.2216	0.009	0.050	0.000	0.031	0.000	0.060	1.050	4.8.2
	$\begin{gathered} 95.2216- \\ 92.9432 \end{gathered}$	0.009	0.096	0.000	0.031	0.000	0.106	1.050	4.8.2
	$\begin{gathered} 92.9432- \\ 90.6647 \end{gathered}$	0.009	0.140	0.000	0.031	0.000	$\begin{gathered} 0.149 \\ \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 90.6647- \\ 88.3863 \end{gathered}$	0.014	0.206	0.000	0.054	0.000	0.222	1.050	4.8.2
	$\begin{gathered} 88.3863- \\ 86.1079 \end{gathered}$	0.014	0.278	0.000	0.054	0.000	$\begin{gathered} 0.294 \\ y \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 86.1079- \\ 83.8295 \end{gathered}$	0.014	0.345	0.000	0.053	0.000	${ }^{0.361}$	1.050	4.8.2
	$\begin{gathered} 83.8295- \\ 81.5511 \end{gathered}$	0.013	0.409	0.000	0.053	0.000	0.425	1.050	4.8.2
	$\begin{gathered} 81.5511- \\ 79.2726 \end{gathered}$	0.013	0.470	0.000	0.052	0.000	0.486	1.050	4.8.2
	$\begin{gathered} 79.2726- \\ 76.9942 \end{gathered}$	0.013	0.527	0.000	0.052	0.000	0.543	1.050	4.8.2
	$\begin{gathered} 76.9942- \\ 74.7158 \end{gathered}$	0.013	0.581	0.000	0.051	0.000	0.597	1.050	4.8.2
	$\begin{gathered} 74.7158- \\ 72.4374 \end{gathered}$	0.013	0.633	0.000	0.051	0.000	$\begin{gathered} 0.649 \\ \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 72.4374- \\ 70.1589 \end{gathered}$	0.013	0.681	0.000	0.050	0.000	0.697	1.050	4.8.2
	$\begin{gathered} 70.1589 \\ 67.8805 \end{gathered}$	0.013	0.728	0.000	0.050	0.000	0.743	1.050	4.8.2
	$\begin{gathered} 67.8805- \\ 65.6021 \end{gathered}$	0.013	0.771	0.000	0.049	0.000	0.787	1.050	4.8 .2
	$\begin{gathered} 65.6021- \\ 63.3237 \end{gathered}$	0.013	0.813	0.000	0.049	0.000	0.829	1.050	4.8.2
	$\begin{gathered} 63.3237- \\ 61.0453 \end{gathered}$	0.013	0.853	0.000	0.048	0.000	$\begin{gathered} 0.869 \\ \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 61.0453- \\ 58.7668 \end{gathered}$	0.013	0.891	0.000	0.048	0.000	0.906	1.050	4.8 .2
	$\begin{gathered} 58.7668- \\ 56.4884 \end{gathered}$	0.013	0.927	0.000	0.048	0.000	$\begin{gathered} 0.942 \\ \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 56.4884- \\ 54.21 \end{gathered}$	0.013	0.961	0.000	0.047	0.000	0.977	1.050	4.8.2
	54.21-50.79	0.006	0.448	0.000	0.021	0.000	0.454	1.050	4.8.2
L2	54.21-50.79	0.006	0.410	0.000	0.020	0.000	0.417	1.050	4.8.2
	$\begin{gathered} 50.79- \\ 48.1958 \end{gathered}$	0.011	0.758	0.000	0.035	0.000	0.770	1.050	4.8.2
	$\begin{gathered} 48.1958- \\ 45.6016 \end{gathered}$	0.011	0.778	0.000	0.035	0.000	0.790	1.050	4.8.2

tnxTower	Job	SGS\# 2101548	$\begin{aligned} & \text { Page } \\ & 23 \text { of } 24 \end{aligned}$
SGS Towers Chapell Hill,	Project	BOE - Richard D Riddle School (US-MD-5072)	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 19:35:07 02/23/21 } \end{array}$
NC Phone: engineering@sgstowers.com FAX:	Client	Vertical Bridge	Designed by Ravi Siddharth Raja

Section No.	Elevation	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$	Ratio $M_{u x}$	Ratio $M_{u y}$	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$	Comb. Stress	Allow. Stress	Criteria
	$f t$	ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
	$\begin{gathered} 45.6016- \\ 43.0074 \end{gathered}$	0.011	0.797	0.000	0.035	0.000	$\begin{gathered} 0.809 \\ \end{gathered}$	1.050	4.8.2
	$\begin{gathered} 43.0074- \\ 40.4132 \end{gathered}$	0.011	0.815	0.000	0.035	0.000		1.050	$4.8 .2$
	$\begin{gathered} 40.4132- \\ 37.8189 \end{gathered}$	0.011	0.835	0.000	0.034	0.000		1.050	4.8.2
	$\begin{gathered} 37.8189- \\ 35.2247 \end{gathered}$	0.011	0.853	0.000	0.034	0.000	0.865	1.050	4.8.2
	$\begin{gathered} 35.2247- \\ 32.6305 \end{gathered}$	0.011	0.870	0.000	0.034	0.000	0.883	1.050	4.8.2
	$\begin{gathered} 32.6305- \\ 30.0363 \end{gathered}$	0.011	0.887	0.000	0.033	0.000		1.050	4.8.2
	$\begin{gathered} 30.0363- \\ 27.4421 \end{gathered}$	0.011	0.903	0.000	0.033	0.000	0.915	1.050	4.8.2
	$\begin{gathered} 27.4421- \\ 24.8479 \end{gathered}$	0.011	0.917	0.000	0.033	0.000	0.930	1.050	4.8.2
	$\begin{gathered} 24.8479- \\ 22.2537 \end{gathered}$	0.011	0.932	0.000	0.032	0.000	0.944	1.050	4.8.2
	$\begin{gathered} 22.2537- \\ 19.6595 \end{gathered}$	0.011	0.945	0.000	0.032	0.000	0.958	1.050	4.8.2
	$\begin{gathered} 19.6595- \\ 17.0653 \end{gathered}$	0.012	0.958	0.000	0.032	0.000	0.971	1.050	4.8.2
	$\begin{gathered} 17.0653- \\ 14.4711 \end{gathered}$	0.012	0.970	0.000	0.031	0.000	0.983	1.050	4.8.2
	$\begin{gathered} 14.4711- \\ 11.8768 \end{gathered}$	0.012	0.982	0.000	0.031	0.000	0.995	1.050	4.8.2
	$\begin{gathered} 11.8768- \\ 9.28263 \end{gathered}$	0.012	0.993	0.000	0.031	0.000	1.006	1.050	4.8.2
	$\begin{gathered} 9.28263- \\ 6.68842 \end{gathered}$	0.012	1.004	0.000	0.031	0.000	1.017	1.050	4.8.2
	$\begin{gathered} 6.68842- \\ 4.09421 \end{gathered}$	0.012	1.014	0.000	0.030	0.000	1.027	1.050	4.8.2
	4.09421-1.5	0.012	1.024	0.000	0.030	0.000	1.037	1.050	4.8.2

Section Capacity Table

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} \curvearrowleft P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
L1	97.5-50.79	Pole	TP23.05x16x0.1875	1	-10483.10	816882.11	93.0	Pass
L2	50.79-1.5	Pole	TP30x22.1588x0.25	2	-16686.70	1450039.43	98.7	Pass
						Pole (L2) RATING =	$\begin{gathered} \text { Summary } \\ 98.7 \\ \mathbf{9 8 . 7} \end{gathered}$	Pass Pass

Program Version 8.0.7.5-8/3/2020 File:C:/Users/Ravi Raja/Downloads/2101548 - BOE - Richard D Riddle School/Tnx/SGS_ 2101548 _VB Site_US-MD-5072_02-18-2021.eri

Monopole Base Plate Connection

Site Info	
SGS \#	2101548
Site Name	E
Order \#	

Analysis Considerations	
TIA-222 Revision	H
Grout Considered:	No
$\mathrm{I}_{\text {ar }}$ (in)	2

$|$| Applied Loads | |
| ---: | :---: |
| Moment (kip-ft) | 1031.73 |
| Axial Force (kips) | 16.69 |
| Shear Force (kips) | |
| *TIA-222-H Section 15.5 Applied | |

Connection Properties

Anchor Rod Data
(6) 2-1/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 38" BC

Base Plate Data
44 " OD x 1.75" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

Stiffener Data
N/A

Pole Data
$30 " \times 0.25$ " 18 -sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Connection Properties	Analysis Results		
Anchor Rod Data	Anchor Rod Summary		(units of kips, kip-in)
(6) 2-1/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 38" BC	Pu_c = 219.68	¢Pn_c = 268.39	Stress Rating
	$\mathrm{Vu}=2.07$	$\phi V \mathrm{n}=120.77$	78.0\%
Base Plate Data	$\mathrm{Mu}=\mathrm{n} / \mathrm{a}$	$\phi M n=n / a$	Pass
44" OD x 1.75" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)			
	Base Plate Summary		
Stiffener Data	Max Stress (ksi):	49.21	(Flexural)
N/A	Allowable Stress (ksi):	54	
	Stress Rating:	86.8\%	Pass
Pole Data			
30 " $\times 0.25$ " 18 -sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)			

Drilled Pier Foundation

Material Properties		
Concrete Strength, f'c:	4	ksi
Rebar Strength, Fy:	60	ksi
Tie Yield Strength, Fyt:	40	ksi

Rebar \& Pier Options
Embedded Pole Inputs Belled Pier Inputs

Analysis Results		
Soil Lateral Check	Compression	Uplift
$\mathrm{D}_{\mathrm{v}=0}$ (ft from TOC)	6.36	-
Soil Safety Factor	3.23	-
Max Moment (kip-ft)	1097.57	-
Rating*	39.2\%	-
Soil Vertical Check	Compression	Uplift
Skin Friction (kips)	190.25	-
End Bearing (kips)	132.54	-
Weight of Concrete (kips)	74.81	-
Total Capacity (kips)	322.79	-
Axial (kips)	91.50	-
Rating*	27.0\%	-
Reinforced Concrete Flexure	Compression	Uplift
Critical Depth (ft from TOC)	6.18	-
Critical Moment (kip-ft)	1097.46	-
Critical Moment Capacity	1671.42	-
Rating*	62.5\%	-
Reinforced Concrete Shear	Compression	Uplift
Critical Depth (ft from TOC)	16.43	-
Critical Shear (kip)	157.32	-
Critical Shear Capacity	334.56	-
Rating*	44.8\%	-

Check Limitation

Check Limitation			
Apply TIA-222-H Section 15.5:	\square		
N/A			\square
Shear Design Options			
Check Shear along Depth of Pier:	\square		
Utilize Shear-Friction Methodology:	\square		
Override Critical Depth:	\square		
Go to Soil Calculations			

Soil Interaction Rating*	$\mathbf{3 9 . 2 \%}$
Structural Foundation Rating*	$\mathbf{6 2 . 5 \%}$
*Rating per TIA-222-H Section 15.5	

Soil Profile														
Groundwater Depth		19	\# of Layers											
Layer	Top (ft)	Bottom (ft)	Thickness (ft)	$\begin{aligned} & \mathbf{V}_{\text {soil }} \\ & (\mathrm{pcf}) \end{aligned}$	$\boldsymbol{Y}_{\text {concrete }}$ (pcf)	Cohesion (ksf)	Angle of Friction (degrees)	Calculated Ultimate Skin Friction Comp (ksf)	Calculated Ultimate Skin Friction Uplift (ksf)	Ultimate Skin Friction Comp Override (ksf)	Ultimate Skin Friction Uplift Override (ksf)	Ult. Gross Bearing Capacity (ksf)	SPT Blow Count	Soil Type
1	0	3	3	110	150		0	0.000	0.000					Cohesionless
2	3	8	5	110	150		25	0.477	0.477				10	Cohesionless
3	8	19	11	115	150		30	1.012	1.012				10	Cohesionless
4	19	21	2	53	87.6		30	1.313	1.313			9	10	Cohesionless

ASCE 7 Hazards Report

Address:

No Address at This Location
$\begin{array}{lll}\text { Standard: } & \text { ASCE/SEI 7-16 } & \text { Elevation: } \\ \text { Risk Category: } & \text { II } & \text { Latitude: } 39.47 \mathrm{ft} \text { (NAVD 88) } \\ \text { Soil Class: } & \text { D - Stiff Soil } & \text { Longitude: -77.066492 }\end{array}$

Wind

Results:

Wind Speed:	113 Vmph
10-year MRI	75 Vmph
25 -year MRI	84 Vmph
50 -year MRI	89 Vmph
100 -year MRI	95 Vmph

Data Source:
Date Accessed:

ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2 Thu Feb 182021

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

AMERICAN SOCIETY OF CIVIL ENGINEERS

Seismic

Site Soil Class:
D - Stiff Soil

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.134	$\mathrm{~S}_{\mathrm{D} 1}:$	0.069
$\mathrm{~S}_{1}:$	0.043	$\mathrm{~T}_{\mathrm{L}}:$	8
$\mathrm{~F}_{\mathrm{a}}:$	1.6	$\mathrm{PGA}:$	0.07
$\mathrm{~F}_{\mathrm{V}}:$	2.4	$\mathrm{PGA}_{\mathrm{M}}:$	0.111
$\mathrm{~S}_{\mathrm{MS}}:$	0.215	$\mathrm{~F}_{\mathrm{PGA}}:$	1.6
$\mathrm{~S}_{\mathrm{M} 1}:$	0.104	$\mathrm{I}_{\mathrm{e}}:$	1
$\mathrm{~S}_{\mathrm{DS}}:$	0.143	$\mathrm{C}_{\mathrm{V}}:$	0.7

Seismic Design Category
B

Data Accessed:
Date Source:

Thu Feb 182021
USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIVIL ENGINEERS
Ice

Results:

Ice Thickness:
Concurrent Temperature:
Gust Speed:
Data Source:
Date Accessed:
1.00 in.

15 F
40 mph
Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Thu Feb 182021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 500 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Attachment 2:
 Collocation Application

COLOCATION APPLICATION
US-MD-5072
Vertical Bridge REIT, LLC. 750 Park of Commerce Drive

SUMMARY

PRIMARY INFO

Application \#: C-103052

Application Version: 2 (Submitted: 2/12/2021 12:11:00 PM)
Application Type: Broadband
Application Name: DCWDC00428A
Lease Type: New Lease
Description:
Installing (6) new antennas, (12) RRUs (1) OVP, and (1) Hybrid Cable - 10×15 ground space needed for platform and shelter

VERTICAL BRIDGE SITE INFO

VB Site \#:

VB Site Name:
US-MD-5072

Latitude: $\quad 39.05946111$
Longitude: $\quad-77.06649167$
Structure Type: Monopole
Structure Height: 100.0000
Site Address: 12501-A Dalewood Drive -
Silver Spring, MD 20906

VERTICAL BRIDGE DEAL TEAM

RLM: Floyd Jenkins FJenkins@verticalbridge.com (301) 667-0069

RLS: Sam Bowden
SBowden@verticalbridge.com

ROM:Jeremy Potts
JPotts@verticalbridge.com (502) 295-7552

TENANT LEGAL INFO

Tenant Legal Name:	DISH Wireless L.L.C.
State of Registration:	Colorado
Type of Entity:	LLC
Carrier NOC \#:	8666246874
Tenant Site \#:	DCWDC00428A
Tenant Site Name:	DCWDC00428A

APPLICANT

Name:	Cherisa Small
Address	6700 Alexander Bell Drive
	Suite 200
	Columbia, MD 21046
Phone Number::	$(301) 801-9035$
Email Address:	cherisa.small@dish.com

FINAL LEASED RIGHTS CONFIGURATION TOTALS

This is a summary of your remaining existing equipment plus the new equipment.

FINAL EQUIPMENT

Qty	Equipment Type
1	Junction Box
6	Panel
12	RRU

FINAL LINES

Qty	Line Type
1	Hybrid

FREQUENCY \& TECHNOLOGY INFO

Type of Technology:	Broadband Wireless
Is TX Frequency Licensed:	Yes
TX Frequency:	$722-728\|642-652\| 2180-2200 \mid 1995-2020$
Is RX Frequency Licensed:	Yes
RX Frequency:	

MOUNT \& STRUCTURAL ANALYSIS

MOUNT ANALYSIS

Provided by Tenant: No
To Be Run by VB: No
Include Mount Mapping: No

STRUCTURAL HARD COPIES

Required: No

Number of Hard Copies

CONTACTS

INVOICE CONTACT

Attention To	Name	Address	Phone Number 1	Phone Number 2	Email 1	Email 2
	Accounts Payable	P.O. Box 6649 Englewood, CO 80112	$(555) 555-5555$		WirelessAPInvoic es@dish.com	

PO CONTACT

Name	Phone	Email
Accounts Payable	$(555) 555-5555$	WirelessAPInvoices@dish.com

LEASING CONTACT

Name	Phone Number	Email
Cherisa Small	$(301) 801-9035$	cherisa.small@dish.com

NOTICE CONTACT			
Notice To	Attention To	Address	
DISH Wireless L.L.C.		Lease Administration	9601 South Meridian Blvd Englewood, CO 80112

COPY NOTICE CONTACT			
Notice To	Attention To	Address	
DISH Wireless, L.L.C		Attn: Office of the General Counsel	9601 South Meridian Blva. Englewood, CO 80112

RF CONTACT		
Name	Phone Number	Email
Morrie Kebbeh	$(813) 704-7429$	morrie.kebbeh@dish.com

TENANT CONSTRUCTION MANAGER CONTACT

Name	Phone Number	Email
Troy James	$(443) 752-7427$	troy.james@dish.com

EMERGENCY CONTACT

Name	Phone Number	Email
DISH WIRELESS NOC	$(866) 624-6874$	noc.alerts@dish.com

LINE \& EQUIPMENT

NEW LINE(S)

Qty	Line Type	Line Size(in.)	Line Location	Comments
1	Hybrid	1.6	Exterior	

NEW EQUIPMENT										
Qty	Equipment Type	RAD Height	Mount (H')	Mount Type	Manufacturer	Model Number	Dimensions (H"xW"xD")	Weight (Lbs.)	Azimuth	Comments
1	Junction Box	90.00	90.00	Platform	Raycap	RDIDC-9181-PF -48	$\begin{aligned} & 8.00 \times 14.00 \\ & \times 16.00 \end{aligned}$	21.85	0	
2	RRU	90.00	90.00	Platform	Fujitsu	$\begin{aligned} & \text { TA0802 } \\ & \text { 5-B604 } \end{aligned}$	$\begin{aligned} & 7.87 \times 14.96 \\ & \times 15.75 \end{aligned}$	63.93	120	(1) Installed RRU; (1) Reserved RRU
2	RRU	90.00	90.00	Platform	Fujitsu	$\begin{aligned} & \hline \text { TA0802 } \\ & 5-\mathrm{B} 604 \end{aligned}$	$\begin{aligned} & 7.87 \times 14.96 \\ & \times 15.75 \end{aligned}$	63.93	240	(1) Installed RRU; (1) Reserved RRU
2	RRU	90.00	90.00	Platform	Fujitsu	$\begin{aligned} & \hline \text { TA0802 } \\ & 5-\mathrm{B} 605 \end{aligned}$	$\begin{aligned} & 15.75 \times \\ & 14.96 \times 9.06 \end{aligned}$	74.95	0	(1) Installed RRU; (1) Reserved RRU
2	Panel	90.00	90.00	Platform	JMA	MX08F RO66520_VOF	$\begin{aligned} & \hline 72.00 \times \\ & 20.00 \times 8.00 \end{aligned}$	54.00	240	(1) Antenna Installed; (1) Antenna Reserved
2	Panel	90.00	90.00	Platform	JMA	MX08F RO66520_VOF	$\begin{aligned} & 72.00 \times \\ & 20.00 \times 8.00 \end{aligned}$	54.00	0	(1) Antenna Installed; (1) Antenna Reserved

COLOCATION APPLICATION
Vertical Bridge REIT, LLC.
US-MD-5072
750 Park of Commerce Drive
Version 2
Suite 200
DISH Wireless L.L.C.
Boca Raton, FL 33487

2	RRU	90.00	90.00	Platform	Fujitsu	TA0802 $5-B 605$	$15.75 \times$ 14.96×9.06	74.95	240 (1) Installed RRU; (1) Reserved RRU		
2	RRU	90.00	90.00	Platform	Fujitsu	TA0802 $5-B 605$	$15.75 \times$ 14.96×9.06	74.95	120 (1) Installed RRU; (1) Reserved RRU 2	RRU	90.00

NEW EQUIPMENT CABINET(S)

Quantity of Cabinets	Cabinet Dimensions (H x W x D)	Manufacturer	Comments
1	$74.00 \times 32.00 \times 32.10$	Charles	

ADDITIONAL SITE REQUIREMENTS

GROUND \& INTERIOR SPACE REQUIREMENTS

Requirement Type	Total Lease Area (L x W)	Cabinet Required	Cabinet Area (L x W)	Shelter Required	Shelter Pad (L x W)	Comments
New	10.00×15.00	Yes	3.00×3.00		x	

GENERATOR REQUIREMENTS

Requirement Type	Fuel Type	Kilowatt Size	Pad Dimensions $(\mathrm{L} \times$ D)	Generator Manufacturer	Fuel Tank Manufacturer	Comments
No Changes			x			

AC POWER REQUIREMENTS

Meter Type	Additional Details	Comments
New Tenant Meter		

BACKHAUL REQUIREMENTS

Requirement Type	Cable Type	Number Of Points Of Entry	Riser Size (Inches)	Comments
Not Required				

SUPPLEMENT TO THE MASTER LEASE AGREEMENT (Pursuant and subject to the MLA)

THIS SUPPLEMENT TO THE MASTER LEASE AGREEMENT ("SLA") is entered into as of
\qquad ("Effective Date"), by and between VB-S1 Assets, LLC, a Delaware limited liability company ("Lessor"), whose address is 750 Park of Commerce Drive, Suite 200, Boca Raton, Florida 33487, and DISH Wireless L.L.C., a Colorado limited liability company ("Lessee"), whose address is 9601 South Meridian Blvd., Englewood, Colorado, 80112.

BACKGROUND

WHEREAS, Lessor's Affiliate, Vertical Bridge REIT, LLC, and Lessee have entered into that certain MLA dated January 29, 2021 (the "MLA"). Such MLA provides that Lessor or its Affiliates and Lessee will enter into separate SLAs on a Site-by-Site basis as mutually agreed upon by the Parties, pursuant to which Lessor or its Affiliates will lease to Lessee certain available space at a Site.

AGREEMENT

NOW, THEREFORE, for good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, and intending to be legally bound hereby, the Parties agree as follows:

1. Site Information. The Leased Property, as more particularly described in Section 6 hereof, means:
a. Lessee Site ID: DCWDC00428A
b. Lessor Site ID: US-MD-5072 / BOE- Richard D Riddle School
c. Address and/or location of the Site: 12501-A Dalewood Drive, Silver Spring, MD 20906
d. Site coordinates (NAD 83):
i. Latitude: 39.05946111
ii. Longitude: -77.06649167
e. Antenna Space centerline height: 90^{\prime}
f. Ground Space dimensions: $10^{\prime} \times 15^{\prime}$
2. Rent; Term.
a. Rent.
i. Commencing on the SLA Rent Commencement Date, the Basic Rent for this SLA shall be One Thousand Two Hundred Fifty and 00/100 dollars ($\$ 1,250.00$) per month, to be paid in accordance with the terms set forth in Section 4 of the MLA.
ii. Additional Rent, if any, shall be paid in accordance with the terms set forth in Section 4 of the MLA, unless otherwise set forth below, in the amount of: Not Applicable
iii. Rent shall be paid to the following address (or via electronic funds transfer as agreed to by the Parties in Section 4.4 of the MLA):

VB-S1 Issuer, LLC
P.O. Box 743906

Atlanta, GA 30374-3906

For Overnight mail:
Bank of America Lockbox Services
Lockbox \# 743906
6000 Feldwood Road
College Park, GA 30349
b. Term. The term of this SLA shall be as set forth in Section 3 of the MLA, unless set forth herein as follows: Not Applicable.
3. Non-Standard Terms. The Parties acknowledge and agree that the following conditions exist at the Site: (Check all that apply)
$\square \quad$ There are no electrical utilities installed at the Site as of the Effective Date (i.e., neither Lessor nor any Co-User at the Site have electrical utilities installed).

- The Leased Property is located, in whole or in part, on land which is owned, operated or controlled by a Governmental Authority (e.g. Bureau of Land Management or Bureau of Indian Affairs).
\square The Structure on the Site is AM Detuned.
\square Tower Modifications are required prior to the commencement of Lessee's initial Installation at the Site.
\square Ground Space at the Site is not included in the legal interest conveyed to Lessee pursuant to this SLA.

4. Key Prime Agreement Terms.
a. Current term expiration date of the Prime Agreement / final term expiration date of the Prime Agreement: 08/22/2025 / 08/22/2025.
b. Does the Prime Lessor have the right to not renew or terminate the Prime Agreement at the end of the current term or any remaining renewal terms: Not Applicable.
c. Special access rules under the Prime Agreement: See Sections 8, 10, and 17 of the Prime Agreement. Additionally, Prime Lessor approval of Lessee's schedule for performing work at the Site must be provided prior to entry onto the Site.
5. Special Provisions. N/A
6. Site Address and Legal Description of Site. Lessor hereby leases to Lessee, and Lessee leases from Lessor, as applicable, the Site, as more particularly described in Section 1 hereof, and which is comprised of the space on the Structure, Easements and Ground Space on the Parcel at heights and locations as more particularly set forth on Schedule A-1 (Collocation Application), Schedule A-2 (Structure Elevation and Site Plan), and Schedule A-4 (Legal Description of Parcel and/or Survey) (together, as applicable, the "Leased Property"), each of which are attached hereto and incorporated herein.
7. Frequencies. As of the Effective Date, Lessee's initial Installation will use those certain frequencies, in pre-approved transmit power, as set forth on Schedule A-1 (Collocation Application), which is attached hereto and incorporated herein by this reference.
8. MLA; Defined Terms; Incorporation of Background; Prime Agreement. This SLA is entered into pursuant to the MLA. All terms and conditions of the MLA are incorporated herein by this reference and made a part hereof without the necessity of repeating such terms and conditions or attaching the MLA. By executing and delivering this SLA, the Parties hereby agree to be bound by all terms and conditions of the MLA applicable to such Party, and to perform all covenants and agreements of such Party therein. Capitalized terms used in this SLA shall have the same meaning ascribed to them in the MLA unless otherwise indicated herein. The background section set forth above is hereby incorporated into this SLA by this reference in its entirety. A true and correct copy of the Prime Agreements) (subject to redaction in accordance with the MLA) is set forth in Schedule A-3 (Redacted Prime Agreement), which is attached hereto and incorporated herein by this reference.
9. Order of Precedence; Conflict. In the event of an inconsistency, conflict or discrepancy between, or among, (a) Section 1 of this SLA, (b) Schedule A-1 (Collocation Application), and/or (c) Schedule

A-2 (Structure Elevation and Site Plan), Schedule A-1 of this SLA shall govern. In the event of an inconsistency, conflict or discrepancy between (x) the MLA, and (y) this SLA, the terms set forth in this SLA shall control.
[REMAINDER OF PAGE INTENTIONALLY LEFT BLANK. SIGNATURE PAGE FOLLOWS.]

IN WITNESS WHEREOF, the Parties have executed this SLA as of the Effective Date.

LESSOR:

VB-S1 Assets, LLC

Title: CEO

LESSEE:

DISH Wireless L.L.C.
By:

Name: Thomas Fuchs

Title: \qquad Market General Manager

1. EXOTHERMC WEDD (2) Two \#2 AMG ARE TNNED SOLD COPPER CNNUCTORS TO GROUND

2. For grouno gono to stel only coat all surfaces wit an ant-oxidant compouno
3. Do wot mstal caile grounong ki at a beno ano alwars drect grouno conouctor
4. Nut d washer shall be placed on the front side of the grouno bar ano bolted on
. all grounding parts and eouiment to ee suppled and installed ey contracto
5. THEE contractor shall be responsibe for intalumg adomonal grouno bar as

YPICAL GROUNDING NOTES
no scale

6700 alexanoer bell drive CoLUMBAT, MD 21046
$B C$
architect
engineers
5661 COLUBBA PIKE, SUITE 200
FALIS CHURCH, VA 22041-2888

 \begin{tabular}{|l|l|l|}
\hline DRAWN BY: \& CHECKED BY: \& APPROVED BY:

\hline

\hline GMW \& NP \& COM

\hline
\end{tabular} RFDS REV \#:

CONSTRUCTION
SUBMITALS
\qquad
\qquad

1	$5 / 3 / 2 / 2$
2	$7 / 19 / 21$

A\&E PROJECT NUM
DISH WRELLESS PROUECT INFORMATON DCWDC00428A
12501-A DALEWOOD DR SILVER SPRING, MD 20906 SHEET TTLE
GROUNDING DETAILS
SHEET NUMEER

6700 Alexander bell drve CoLUMBII, MD 21046

昱

5661 COLUMBI PRE, SUITE 200
FALLS CHURCH, VA 22041-2868

 DRAWN BY: ${ }^{\text {CHECKED BY: }}$ |APRROVED BY: | GMW | NP | CDM |
| :---: | :---: | ---: |
| RFDS REV \#: | | 0 | CONSTRUCTION DOCUMENTS

SUBmitals		
Rev	Date	DESCRIPTIO
\wedge	3/2/21	ISSELE Por Renev
-	4/6/21	1 Ssuee for constructow
	5/3/21	Ssuce for consinuctan
2	7/10/21	ISSLEE For Construecom
dE PROUECT NUMBER		

DISH WRELLESS PROUECT INFORMATON DCWDC00428A

SITE ACTVIT REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECENING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE STEE YOU MUST
WIRELESS ANO TOWER OWNER NOC \& THE DISH WIRLESS AND TOWER OWNER CONSTUCTTON MANAGER.
2. "LOOK UP" - DISH WIRELESS AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRIT OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDRED DURING ALL STAGES
OF DESIGN, INSTALATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUPMENT INSTALATIONS SHALL OF DESIGN, INSTALATION, AND INSPECTION. TOWER MODIFCCATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHAL
NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON

 THE NOC TO GENERATE A SAFETY CLIMB MAITEEANCE AND CONTRACTOR NOTICE TICKET.
3. PRIOR TO THE START OF CONSTRUCTION, ALL REOURED JURISIICTIONAL PERMTSS SHALL BE OBTAANED. THIS INLLUDES, BUT
IS NOT LIMTED TO, BULDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTVTIES

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMTED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING
PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBIIT OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTON OF THE WORK CONTANED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDTTIN); FEDERAL, STATE, AND LOCAL REGLATIONS;
AND ANY APPLCABLE INOUSTRY CONSENSUS STANDARD RELATED TO THE CONSTRUCTION ACTVIIES BEING PERFORMED. ALL RIGGING PLANS SHAL ADHERE TO ANIIASSE A10.08 (LLTTEST EDITIN) ANO DISH WWRLLESS AND TOWER OWNER STANOARDS, INCLUDDING THE
REQUIRED INVOLVEMENT OF A QUALFIED ENGINER FOR CLASS IV CONSTRUCTION, TO CERTIFT THE SUPPORTING STRUCTURE(S) IN REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER
ACCORDANCE WITH ANI/TTA-322 (LATEST EDITION).
5. ALL SITE WORK TO COMPLY WTH DISH WRELESS AND TOWER OWNER INSTALLATON STANDARDS FOR CONSTRUCTION ACTVTIES
ON DISH WRELESS AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALATION, ATERATON, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

8. ${ }^{\text {in }}$ THE CONTRACTOR SHAL INSTALL AL
9. THE CONTRACTOR ShaLL CONTACT UTLLTTY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERYCES PRIOR TO THE START
10. ALL EXISTING ACTVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILTIES WHERE ENCOUNTERED IN THE WORK, SHALL BE
PROTECTE AT AL TTMES AND WHERE REOURED FOR THE PROPER EEECUTON OF THE WORK, SHALL BE RELOCATED AS DRECTED BY PROTECTED AT ALL TMES AND WHERE REQURED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY
CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVAING OR DRILING PIERS AROUND OR NEAR
 FALL PROTECTI
PROCEDURES.
11. ALL SITE WORK SHAL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFCCATONS,
LATEST APPROVED REVIION.
12. CONTRACTOR SHAL KEEP THE SITE FREE FROM ACCUMLLATING WASTE MATERAL, DEBRIS, AND TRASS AT THE COMPLLETION OF
THE WORK IF NEESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER RETUSE SHALL BE REMOVED FROM THE STIE AND
DISPOSED OF LEGALY.
13. ALL Existing inactive sewer, water, gas, electric and other utilities, which interfere with the execution of the Work, SHAL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINED AT POINTS WHEICH WILL NOT INTERFERE WTH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS AND TOWER OWNER, AND/OR LOCAL UTLLTIES. 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPCCIFICATION FOR STEE SIISNAGE
REQUIRED BY LOCAL JURISOCTION AND SIGNAGE REQUIRED ON INDNIDUAL PIECES OF EQUPMENT, ROOMS, ANO SHELTERS.
15. the site shall be graded to cause surface water to flow away from the carrier's equipment and tower areas. 16. THE SUB GRADE SHALL be compacted and brought to a smooth uniform grade prior to finished surface
application. 17. THE AREAS OF THE OWNERS PROPERT DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR
DRVVWA, SALL BE GRADD TO A UNIFORM LLOPE, AND STABIIZED TO PREVENT EROSION AS SPECIFED ON THE CONSTUCTION
DRAWINGS AND/OR PROJECT SPECIFCATIONS.
18. CONTRATTOR SHAL MINIIZE DIITURBANCE TO EXITTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF
REQURED DURING CONSTRUCTION, SHALL BE IN CONFORMACE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL 19. THE CONTRACTOR SHAL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAR
DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SAISFACTON OF OWNER.
20. CONTTACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERRALS SUCH AS COAXIAL CABLES AND OTHER TTEMS
REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTT
REMOVED FROM THE EXISTING FACLLITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
21. basis. CONTRActor shall leave premises in clean condition. trash and debris should be removed from site on a dally
bill
22. NO FILL OR EMBANKMEN MATERIAL SHALL Be PLACED on frozen ground. frozen materials, snow or ice shall not
BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH WRELESS

TOWER OWNER:TOWER OWNER
2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALY
EXERCIIED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMIAR LOCALITES. IT IS ASSUMED THAT WORK DEPICTED WIL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDCE
OF THE APPLICABLE CODE STANDARDS AND REOUREMENTS AND OF INDUSTRY ACCEPTED STANARD GOOD PRACTCE OF THE AP
CONOITION OR ELEMENT IS (OR CAN BE) EXPLLCITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED CONDITION OR ELEMENT II (OR CAN BE EXPLCITLY SHOON ON THESE DRAWIN.
STANDRD GOOD PRACTICE FOR MSCELANEOUS WORK NOT EXPLICTLY SHOWN.
3. THESE DRAWIGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF
CONSTRUCTION. THE CONTRACTOR SHALL
BE SOLELY RESPONSIBLE FOR THE CONSTUCTON MEANS, METHOCS, TECHNIQU

SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND
 SITE VISTST BY THE ENGINER OR HIS REPRESENT
OBSERVATON OF THE FINISHED STRUCTURE ONLY.
 THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETALLS, GENERAL NOTES, AND SPECIFICATIONS,
GREATER, MORE STRICT REQUREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQURED CONTACT THE ENGINER OF GREATER,
RECORD.
SUBSTANTAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST
IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SELE RESPONSIBILTTT OF THE CONTRACTOR TO

PABCREPANCIES AND/OR CONFLCTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFED AS SOON AS Possible.

7. ALL MATERALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WTH ALL APPLICABLE CODES, REGLATIONS
AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANGES, RULES, ANEGULATONS AND LAWFUL ORDERS OF ANY PUBLLC AUTHORITY REGAROING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED
 UNLESS NOTED OTHERWISE, THE WORK SHALL INCLLDE FURNISHING MAT
SECESARY TO COMPLLETE ALL INSTALATONS AS INDCCATED ON THE DRAWINGS.
9. THL THE CONTRACTOR SHALLI INSTALL ALL EQUIPMENT AND MATERILLS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS
10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE
AN ALTERNTEV INSTALATION FOR APPROVAL BY THE CARRER AND TOWER OWNER PRIOR TO PROCEEDNG WTH ANY SUCH CHANGE
 DRAWINGS.
12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURES, LANDSCAPING AND STRUCTURES. ANY
DAMAGED PART SHALL BE REPARED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH WIRELESS AND TOWER OWNER 13. CONTRACTOR SHALL LEGALLY AND PRRPERLY DISPOSE OF ALL SCRAP MATERRALS SUCH AS COAAIAL CABLES AND OTHER TEMS
REMOVED FROM THE EXXSTING FACIITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATON. 14.
basis. CONtractor shall leave premises in clean condition. trash and debris should be removed from site on a daly

700 AlEXANDER BELL DRVE
CoLUMBAI, MD 21046
rchitec
engineers

mix iuway

DRAWN BY: CHECKED BY: APPROVED BY | GMW | NP | COM |
| :--- | :--- | :--- | RFDS REV \#:

CONSTRUCTION

ReV		DATE	DESCRRPTION
		3/2/21	Ssuef

1	$5 / 3 / 21$
2	$7 / 1 / 2 / 21$

Sssuep for conssiveri
$\underset{\text { A\&E PROUECT NUMBER }}{ }$

Reless project informatio

DCWDC00428A
12501-A DALEWOOD DR. SHEET TTLE
general notes

AND CONSTRUCTION SPECIFCATION FOR CAST-IN-PLACE CONCRETE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN
2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO be 1000 pss.
3. ALL CONCRETE SHALL HAVE A MINMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO
MORE THAN 90 MINTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACE
TEMPERATURE OF CONCREE SHALL NOT EXCED 90° 'f AT TIME OF PLACEMENT.
4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAN AIR ENTRINING ADMXXURES. AMOUNT OF AIR ENTRAINMENT TO BE MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
5. all steel reinforcing shall conform to astm a615. all welded wire fabric (wwf) shall conform to astm alb5. all SPLICES SHALL BE CLASS "B" TENSION SPLCES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, SPLLCES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE
UNLESS NOTED OTHERWISE. YELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLOWS:
\#4 BARS AND SMALLER 40 ks
\#5 Bars and larger 60 ks
${ }^{6}{ }_{\text {DRAWINGS: }}^{\text {THE }}$
LLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON
Concrete cast aganst and permanently exposed to earth $3^{\prime \prime}$
CONCRETE EXPOSED TO EARTH OR WEATHER:
\#6 bars and larger 2^{n}
\#5 bars and smaller 1-1/2

- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- slab and walls $3 / 4^{\prime \prime}$
beams and columns $1-1 / 2^{\prime \prime}$

7. A tooled edee or a $3 / 4^{\prime \prime}$ chamfer shall be provided at all exposed edges of concrete, unless noted otherwise,

ELECTRICAL INSTALATION NOTES:

1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WTTH THE PROUECT SPECIFICATIONS, NEC AND ALL APPLCABLL
2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUTS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED
3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
4. all circuits shall be segregated and maintain minimum cable separation as required by the nec.
4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRTTERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF
THE NATONAL ELLCCRICAL COOE.
 CURRENT TO WHICH THEY ARE SUBBECTED, 22.OOO AC M MNMUM. VERIF AVALLABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE
RATNG OF EIECTRICAL EQUIPMENT IC ACCORDANCE WTH ARTCLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDCTITON.
5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE
LABELED WTH COLOR-CORED INSULATION OR ELECTRICAL TAPE (IM BRAND, $1 / 2^{2}$ " PLASTIC ELECTRICAL TAPE WTH UV PROTECTON, OR LABELED WTH COLOR-CODED INSULATION OR ELLCTRICAL TAPE (3 M BRAND,
EQUAL). THE IDENTFICATION METHOD SHALL CONFORM WTH NEC AND OSHA.
6. ALL ELECTRICAL COMPONENTS SHAL BE CLEARLY LABELLE WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE
CONFGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT 10's).
7. PANEL Boards (ID NUMBERS) SHALL be CLEARIY LABELED wTH PLASTIC LABELS.
8. TIE WRAPS ARE NOT ALLOWED.
9. ALL POWER AND EQUPPMENT GROUND WIRING IN TUBBNG OR CONDUUT SHAL BE SINGLE COPPER CONDCTOR (\#14 OR LARGER)
WWTH TTPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATON UNLESS OTHERWISE SPECFIFD. SUPPLEMENTAL EQUIPMEN GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (H6 OR LARGER) WITH
TPDE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THWW, RHW, OR RHW-2 INSULATON UNLESS OTHERWISE EPECIFED. 11. PPWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (\#14 OR LARGER) UNLESS 11. PPWER AND
OTHERWISE SPECFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TTPE TC CABLE (\#14 OR LARGER), WTH
THPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATON UNLESS OTHERWISE SPECIFED. 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STHLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STILE, COMPRESSION WIRE LUGS AND WRE NUTS
(OR EQUAL). UUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN $75^{\circ} \mathrm{C}$ ($90^{\circ} \mathrm{C}$ IF AVALABIE).
14. RACEWAY AND CABLE TRAY SHALL be LSTED OR LaBeled for electrical use in accordance with nema, ul, ansi/IEEE and 15. ELLCTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUTT (RMC) SHALL BE USED FOR
EXPOSED INDOOR LCOATIONS.
 SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE
GRADE PVC CONDUIT. 18. LIQUDD-TIGHT FLEXIBLE METALLIC CONDUTT (LIQUID-TTTE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VBRATION
OCCURS OR FLEXBIBLTY IS NEDED. 19. CONDUUT AND tUBing Fitings shal be threaded or compression-TTPe and approved for the location used. set
sCrew filings are not acceptable. 20. CABinets, boxes and wire wars shall be labeled for electrical use in accordance with nema, ul, ansi/ieee and the 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD (WIREMOLD SPECMATE WIREWAY).
22. SLOTtED Wiring duct shall be pvc and include cover (pandut type e or equal).
23. CONDUTTS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WLLL NOT BE PERMITTED. CLOSELY FOLOW THE LINES OF

24. EQUPMEN CABNETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET
STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA ((OR BETER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETER) FOR STEELL SHALL MET
EXTERIOR LOCATINS.
25. METAL RECEPTACLE, SWTTCH AND DEVCE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR
EXCEED UL $514 A$ AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR EXCEED UL 514 A AND NEMA OS
BETER) FOR EXTERIOR LOCATIONS.
26. Nonmetallic receptacle, switch and device boxes shal meet or exceed nema os 2 (newest pevision) aid be rated NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETER) FOR EXTERIOR LOCATIONS.
27. THE CONTRACTOR SHALL NOTIF AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH WIRLLESS AND TOWER
OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRBUTION PANEIS.
28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE RREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE
29. install lamicoid label on the meter center to show "oish wireless
30. all empty/spare conduits that are installed are to have a metered mule tape pull cord installed.
dish
wireless.
6700 ALEXANDER BELL DRVE Columbic, MD 21046
architects engine ers 5661 COLUMBA PIKE, SUITE 200
FALLS CHURCH, VA $22041-2868$

DRAWN BY:	CHECKED BY:	APPROVED BY

GMN	NP	COM

CONSTRUCTION DOCUMENTS

SUBMITALS		
Rev	DATE	DESCRIPTION
\wedge	3/2/21	Sssued for Revem
-	4/8/21	Ssued for comervucton
	3/3/21	Ssuee for constructow
2	7/18/21	Ssuce for consinuctom
A\&E PROJECT NUMEER		
		-
	IRELESS	S PRoJECT INFOR

andine notes:

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S)
IE
2. THE CONTRACTOR SHAL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR ACHEVE A TEST RESULT OF 5 OHMS OR LESS.
3. THE CONTRACTOR IS RESPONSIBE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO
PREVENT ANY LOSS OF CONTINUITY NIN THE GROUNDING SYSTEM OR DAMAGE TO THE CONUUTT AND PROVIDE TTESTING RESULTS.
4. METAL CONDUTT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALY CONTNUOUS WITH LISTED BONOING FITTINGS OR BY
BONDING ACROSS THE DISCONTINUITY WITH \#6 COPPER WIRE UL APPROVED GROUNDING TPPE CONDUTT CLAMPS.
5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR STRANDED COPPER CONDUCTORS
WTH GREN
EQUPMENT
6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WTH GREEN INSULATED SUPPLEMENTAL,
EQUPMENT GROUND WRES, \#6 STRANDED COPPER OR LARGER FOR INDOOR BTS; \#2 BARE SOLI TINNED COPPER FOR OUTDOOR BTS.
7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE
OF THE GROUND BUS ARE PERMITED.

OF THE GROUND BUS ARE PERMITIED.
8. ALL Exterior ground conductors between equipment/ground bars and the ground ring shall be \#2 solid tinned
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS
10. USE OF 90° bends in the protection grounding conductors shall be avoided when 45° bends can be adequately
supported.
11. EXOTHERMIC WELDS SHALL be USED FOR ALL GROUNOING CONNECTIONS bELOW GRADE.
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

BAR. ICE BRIDGE BONDING CONDUCTORS SHALL be Exothermically bonded or bolted to the bridge and the tower ground
15. APPROVED antioxidant coatings (i.e. CONductive gel or paste) shall be used on all compression and bolted ground
16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL
17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND
18. BOND ALL METALLIC OBJECTS WTTHIN 6 ft OF MAIN GROUND RING WITH (1) \#2 BARE SOLL TINNED COPPER GROUND
CONDUCTOR.
19. GROUND CONDUCTORS USED FOR THE FACILTY GROUNDING AND LIGHTNNG PROTECTION SYSTEMS SHALL NOT BE ROUTED TLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUREMENTS OR LOCAL
 CONDITIONL, NON-MEIALLIC MATERAL SUCH AS PVC CONDUT SHALL BE USED. WHERE USE OF METAL CONDUTIT IS UNAVOIDABLE (i.e.,
NONMETALLC CONDUIT PROHBITED BY LOCAL CODE) THE GROUND CONOUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONOUTT. 20. ALL GROUNDS THAT TRANSTIION FROM BELOW GRADE TO ABOVE GRADE MUST BE \#2 BARE SOLDD TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN $3^{\prime \prime}$ TO $6^{\prime \prime}$ OF CAD-WELD TERMNATIN POINT.
OF THE CONDUIT MUST BE SEALED WITH SLICONE CAULK. (ADD TRANSITONING GROUND STANDARD DETAIL AS WELL).
21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE
 SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALER THAN $2 / 0$ COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO

6700 ALEXANDER BELL DRVE
SUITE 221
BC
architects
enginers
5661 COLUBBA PIKE, SUITE 200
FALLS $\mathrm{CHURCH}, ~ V A$
$22041-2868$

Dish wreless project information DCWDC00428A 12501-A DALEWOOD DR SLVER SPRING, MD 2090

SHEET TTLE
general notes

[^0]: Application Number: 2021071515 Type: Colocation Received (date): 7/19/2021
 Revised: 8/3/2021
 Revised: 9/28/2021
 Applicant: Jacobs Telecommunications on behalf of Dish Wireless
 Site Name/Location: Wheaton High School/ 12501 Dalewood Road, Silver Spring Zoning Standard: R-60 Property Owner: MCPS
 Description: Install (3) Panel Antennas (1 per sector) on (1) Antenna Mount. Install (6) Radio Units (2 per sector), (1) OVP Device, (1) Hybrid Cable and associated jumpers on existing telecommunications tower. Install (1) metal platform for (2) cabinets, (1) ice bridge, (1) telcofiber box, (1) GPS unit, (1) safety switch, (1) ciena box, and (1) meter socket on the ground beneath the tower.
 Tower Coordinator Recommendation: Recommended on the condition the applicant attend a future PTA meeting to discuss the proposed collocation, and on the condition the applicant provides written approval from MCPS Staff of the attachments at the time of permitting.

 Signature:
 Date: 9/28/2021
 Impact on land-owning agency: N/A
 Existing or future public safety telecommunications facilities and plans: N/A
 Colocation options: T-Mobile is also located on this existing monopole.
 Implications to surrounding area: The MCAtlas zoning map (below) shows the site (circled) and the vicinity.

[^1]: Note: For pole sections, center of pressure calculations do not consider feed line shielding.

[^2]: Note: For pole sections, center of pressure calculations do not consider feed line shielding.

[^3]: Note: For pole sections, center of pressure calculations do not consider feed line shielding.

